BN/GS填充EP导热绝缘复合材料的制备
Preparation of BN/GS Filled EP Thermal Conductive and Electrical Insulation Composites
查看参考文献19篇
郭玉兰
1,2,3
何静
1,2,3
屈琦琪
1,2,3
苏政
1,2,3
王化
1,3
*
田兴友
1,3
文摘
|
采用化学还原法,利用氮化硼(BN)和氧化石墨烯(GO)制备了一种新型的具有三维网络结构的氮化硼/石墨烯(BN/GS)复合填料,并通过共混的方式制备了环氧树脂(EP)复合材料。运用包括高阻计及四探针测试系统等多种技术手段表征复合材料的结构和性能。研究结果表明,实验成功制备了具有三维网络结构的BN/GS复合填料,复合材料的热导率和热稳定性随着填料含量的增大而获得明显提升。由于GS在这种预制复合填料中的桥接作用,显著降低了界面热阻,BN/GS复合填料相比单一填料BN对复合材料热导率增加的效果更加突出,填料量达30wt%时,BN/GS/EP的热导率达到EP的热导率的5.38倍;由于GS含量低以及BN隔断GS之间的电子传输,复合材料仍保持良好的电绝缘性能。 |
其他语种文摘
|
BN/GS hybrid filler with three-dimensional network constructed was prepared by chemical reduction of boron nitride(BN)and graphene oxide(GO).Epoxy composites were obtained by physical mixing of the BN/GS hybrid filler and epoxy.Structures and properties of the composites were conventionally characterized using techniques including high resistivity meter and 4probe resistivity measuring system.The results first show that the preparation of the hybrid fillers with three dimensional network was successful. Thermal conductivity,thermal stability of the as-prepared composites enhance remarkably with increasing loading content of the fillers.The bridge effect of GS in the as-prepared hybrid filler reduces the interface thermal resistance significantly.Compared with BN filler,BN/GS hybrid filler is more effective in improving thermal conductivity of composites.Thermal conductivity of BN/GS/epoxy composite with 30wt% dosage is 5.38times as high as pure epoxy resin.As low content of BN and BN cut off the transmission of electrons of GS,the composites still have good electrical insulation performance. |
来源
|
材料科学与工程学报
,2020,38(2):189-193 【核心库】
|
DOI
|
10.14136/j.cnki.issn1673-2812.2020.02.003
|
关键词
|
氮化硼
;
石墨烯
;
三维结构
;
导热性
;
电绝缘性
|
地址
|
1.
中国科学院合肥物质科学研究院应用技术研究所, 安徽, 合肥, 230088
2.
中国科学技术大学科学岛分院, 安徽, 合肥, 230026
3.
中国科学院光伏和节能材料重点实验室, 中国科学院光伏和节能材料重点实验室, 安徽, 合肥, 230088
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1673-2812 |
学科
|
一般工业技术 |
基金
|
国家重点研发资助项目
;
中科院先导资助项目
|
文献收藏号
|
CSCD:6720729
|
参考文献 共
19
共1页
|
1.
Kim K. Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method.
Ceramics International,2014,40(4):5181-5189
|
CSCD被引
8
次
|
|
|
|
2.
Tang B. Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials.
International Journal of Heat and Mass Transfer,2015,85:420-429
|
CSCD被引
12
次
|
|
|
|
3.
Zhou Y. The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation.
Scientific Reports,2014,4:4779
|
CSCD被引
5
次
|
|
|
|
4.
Chen J. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability.
Advanced Functional Materials,2017,27(5):1604754
|
CSCD被引
59
次
|
|
|
|
5.
Lian G. Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading.
Chemistry of Materials,2016,28(17):6096-6104
|
CSCD被引
41
次
|
|
|
|
6.
Kholmanov I. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials.
ACS Nano,2015,9:11699-11707
|
CSCD被引
20
次
|
|
|
|
7.
Zhao Y H. Study on thermal properties of graphene foam/graphene sheets filled polymer composites.
Composites Part A Applied Science and Manufacturing,2015,72:200-206
|
CSCD被引
14
次
|
|
|
|
8.
Conrado F. A continuous 3D-graphene network to overcome threshold issues and contact resistance in thermally conductive graphene nanocomposites.
Journal of Nanomaterials,2017,2017:1-11
|
CSCD被引
8
次
|
|
|
|
9.
廖治强. h-BN用量对h-BN/MVQ导热绝缘复合材料性能的影响.
高分子材料科学与工程,2016,32(2):65-70
|
CSCD被引
3
次
|
|
|
|
10.
Liu K. Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide.
Journal of Materials Chemistry,2011,21(24):8612-8617
|
CSCD被引
4
次
|
|
|
|
11.
Huang T. Boron nitride@graphene oxide hybrids for epoxy composites with enhanced thermal conductivity.
RSC Advances,2016,6(42):35847-35854
|
CSCD被引
10
次
|
|
|
|
12.
Tian K. N-doped reduced graphene oxide/waterborne polyurethane composites prepared by in situ chemical reduction of graphene oxide.
Composites Part A:Applied Science and Manufacturing,2017,94:41-49
|
CSCD被引
5
次
|
|
|
|
13.
Jorio A. Perspectives on Raman spectroscopy of graphene-based systems:from the perfect two-dimensional surface to charcoal.
Physical Chemistry Chemical Physics Pccp,2012,14(44):15246-15256
|
CSCD被引
2
次
|
|
|
|
14.
Wu X. High-rate capacitive performance of graphene aerogel with a superhigh C/O molar ratio.
Journal of Materials Chemistry,2012,22(43):23186-23193
|
CSCD被引
11
次
|
|
|
|
15.
Yang S. Graphene aerogel prepared by thermal evaporation of graphene oxide suspension containing sodium bicarbonate.
Journal of Materials Chemistry A,2015,3(15):7950-7958
|
CSCD被引
6
次
|
|
|
|
16.
Yu W. Graphene based silicone thermal greases.
Physics Letters A,2014,378(3):207-211
|
CSCD被引
3
次
|
|
|
|
17.
Kim K. Magnetic filler alignment of paramagnetic Fe_3O_4 coated SiC/epoxy composite for thermal conductivity improvement.
Ceramics International,2015,41(9):12280-12287
|
CSCD被引
9
次
|
|
|
|
18.
Pradhan B. Synergistic effect of threedimensional multi-walled carbon nanotube-graphene nanofiller in enhancing the mechanical and thermal properties of highperformance silicone rubber.
Polymer International,2014,63(7):1219-1228
|
CSCD被引
11
次
|
|
|
|
19.
Hou J. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity.
RSC Advances,2014,4(83):44282-44290
|
CSCD被引
23
次
|
|
|
|
|