过成熟页岩孔隙结构变化的石英管热模拟研究
Quartz-tube thermal simulation study on the pore structure transformation in over-matured shales
查看参考文献36篇
文摘
|
对上扬子区寒武系牛蹄塘组和志留系龙马溪组两套过成熟页岩开展了系列温度点石英管热模拟实验,在应用氦孔隙度测试法、高压压汞实验和氮气吸附法等测试技术分析模拟样品孔隙结构参数的基础上,研究了页岩孔隙结构随温度的变化特征。结果表明:(1)两组页岩孔隙度、成熟度随热模拟温度的升高有增加的趋势,热模拟后牛蹄塘组页岩孔隙度变化范围介于4.2%~12.2%之间,成熟度介于3.04%~3.46%之间,龙马溪组页岩孔隙度介于5.8%~11.1%之间,成熟度介于2.87%~3.38%之间。页岩孔容的增加主要源于介孔、矿物微裂缝以及基质微裂缝的显著增多;(2)牛蹄塘组页岩热模拟后孔体积和比表面积变化范围分别为0.0031~ 0.031 cm~3/g和0.47~2.93 m~2/g,而龙马溪组页岩的变化范围分别为0.015~0.054 cm~3/g和3.62~13.93 m~2/g;两组页岩原样的比表面积均来自孔径小于10 nm的纳米孔的贡献,而热模拟后的页岩比表面积则主要来自大于10 nm的孔隙贡献。(3)热模拟后的牛蹄塘组页岩和龙马溪组页岩比表面积与有机碳(TOC)含量减少量成一定的正相关性,与脆性矿物变化量和黏土矿物含量之间的相关性较小,显示比表面积的变化主要与有机质热演化导致的有机纳米孔的增加有关,而黏土矿物在过成熟阶段趋于稳定,对比表面积变化影响较小。 |
其他语种文摘
|
The Niutitang Formation and Longmaxi Formation shales of the upper-Yangtze region were pyrolized by using the quartz-tube thermal simulation method with an aim to characterize the pore structure changes in over-matured shales. The pore structure parameters of the pyrolyzed shale samples were measured by using the helium porosity method, nitrogen adsorption and mercury intrusion experiments. The results show that the porosity and maturity of the Longmaxi Formation and Niutitang Formation shales tend to increase with increasing thermal temperature. The total helium porosity of the pyrolyzed Niutitang Formation shales varies from 4.2% to 12.2% and their maturities are within the range of 3.04%~3.46%,while the porosity and maturity of the pyrolyzed Longmaxi Formation shales are within the range of 5.8% to 11.1% and 2.87%~3.38%, respectively. The increase in the pore volume of pyrolyzed shales is mainly contributed to the mesoporous and micro-fractures in brittle minerals as well as in the matrix. The total pore volume of the pyrolyzed Niutitang Formation and Longmaxi Formation shales range from 0.0031 cm~3/g to 0.031 cm~3/g and from 0.015 cm~3/g to 0.054 cm~3/g, respectively. The total surface area of the Niutitang Formation shales varies from 0.47 m 2/g to 2.93 m~2/g, as compared to a higher value of 3.62~13.93 m~2/g for the Longmaxi Formation shales. The specific surface area of the initial shales is mainly due to nanopores which are less than 10nm in diameter, but the nanopores which are larger than 10 nm in diameter become the dominant contributors in the pyrolyzed shales. The specific surface area of the pyrolysed Niutitang Formation and Longmaxi Formation shales displays a positive correlation with TOC, but it shows a poor correlation with the contents of clay and brittle minerals, suggesting that changes in specific surface area are mainly controlled by organic nanopores. |
来源
|
地球化学
,2016,45(4):407-418 【核心库】
|
关键词
|
过成熟页岩
;
孔隙度
;
孔径分布
;
比表面积
;
热模拟
|
地址
|
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
中国科学院战略性先导科技专项
;
国家自然科学基金
|
文献收藏号
|
CSCD:5756353
|
参考文献 共
36
共2页
|
1.
Chalmers G R L. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada.
Int J Coal Geol,2007,70(2):223-239
|
CSCD被引
129
次
|
|
|
|
2.
Chalmers G R L. Lower Cretaceous gas shales in Northeastern British Columbia, Part I: Geological controls on methane sorption capacity.
Bull Can Pet Geol,2008,56(1):1-21
|
CSCD被引
158
次
|
|
|
|
3.
Curtis Mark E. Development of organic porosity in the Woodford Shale with increasing thermal maturity.
Int J Coal Geol,2012,8(4):26-31
|
CSCD被引
248
次
|
|
|
|
4.
Fishman N S. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom.
Int J Coal Geol,2012,7(12):32-50
|
CSCD被引
54
次
|
|
|
|
5.
胡海燕. 富有机质Woodford页岩孔隙演化的热模拟实验.
石油学报,2013,34(5):820-825
|
CSCD被引
45
次
|
|
|
|
6.
马骁轩. 茂名油页岩中干酪根的热模拟地球化学演变及表征.
地球化学,2013,42(4):373-378
|
CSCD被引
3
次
|
|
|
|
7.
吴松涛. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征.
石油勘探与开发,2015,42(2):167-176
|
CSCD被引
65
次
|
|
|
|
8.
程鹏. 很高成熟度富有机质页岩的含气性问题.
煤炭学报,2013,38(5):737-741
|
CSCD被引
51
次
|
|
|
|
9.
Tian H. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods.
Mar Pet Geol,2013,48(1):8-19
|
CSCD被引
110
次
|
|
|
|
10.
Tian H. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China.
Mar Pet Geol,2015,62(1):28-43
|
CSCD被引
60
次
|
|
|
|
11.
Cao T T. Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China.
Mar Pet Geol,2015,61(7):140-150
|
CSCD被引
41
次
|
|
|
|
12.
刘德汉. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用.
科学通报,2013,58(13):1228-1241
|
CSCD被引
68
次
|
|
|
|
13.
Brunauer S. Adsorption of gases in multimolecular layers.
J Am Chem Soc,1938,60(2):309-319
|
CSCD被引
389
次
|
|
|
|
14.
Barrett E P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms.
J Am Chem Soc,1951,73(1):373-380
|
CSCD被引
301
次
|
|
|
|
15.
王飞宇. 过成熟海相页岩孔隙度演化特征和游离气量.
石油勘探与开发,2013,40(6):764-768
|
CSCD被引
72
次
|
|
|
|
16.
Dorsch J.
Determination of effective porosity of mudrocks -A feasibility study. Office of Scientific and Technical Information Technical Reports,1995:1-70
|
CSCD被引
1
次
|
|
|
|
17.
Krevelen V.
Coal: Typology, Chemistry, Physics, Constitution,1981:1-514
|
CSCD被引
1
次
|
|
|
|
18.
郭秋麟. 泥页岩埋藏过程孔隙度演化与预测模型探讨.
天然气地球科学,2013,24(3):439-449
|
CSCD被引
40
次
|
|
|
|
19.
王义凤. 烃源岩高-过成熟阶段排烃机理.
石油学报,2013,34(1):51-56
|
CSCD被引
3
次
|
|
|
|
20.
Gregg S J.
Adsorption,Surface Area and Porosity. (2nd ed),1982:220-221
|
CSCD被引
1
次
|
|
|
|
|