帮助 关于我们

返回检索结果

精细光谱探测与计量分析技术在长江干流水质水环境监测中的应用
Application of fine spectral detection and quantitative analysis technology in water quality and environmental monitoring of the Yangtze River main stream

查看参考文献21篇

赵宇博 1,2   王雪霁 1   刘骁 1   巩凯杰 3   邹磊 4   林忠辉 4   于涛 1 *   鱼卫星 1   胡炳樑 1  
文摘 水生态环境监测是生境保护的前提和基础,针对长江流域水系点多面广、复杂多样、瞬息万变等特点,对监测手段提出了更高的要求。目前,针对大型地表水系的水质监测方式仍以人工取样结合实验室化学分析或现场手持式仪器分析为主,存在方法滞后、手段单一、频次偏低、面源缺失等问题。因此,迫切需要新体制监测技术,突破实时快速、面源定量等现实需求,为长江水系统综合模拟提供可靠数据源。在此背景下,本文提出了一种具有完全自主知识产权的精细光谱探测与计量分析技术,开发了地基、空基等体系技术与装备,在相关项目支持下,开展了体系化技术的示范应用,在长江干流关键断面、三峡示范区和鄱阳湖示范区进行了空-地立体监测,取得了良好效果。监测数据经云平台接入“长江模拟器”,为其综合运行提供了快速实时数据支持,也为未来流域大型水系综合监测提供了新方法和应用典范。
其他语种文摘 Water eco- environment monitoring is the premise and foundation of habitat protection. In view of the characteristics of the Yangtze River Basin's water system, which is diverse, complex, and ever- changing, higher requirements are put forward for monitoring methods. At present, the water quality monitoring methods for large surface water systems are still mainly based on manual sampling combined with laboratory chemical analysis or on-site hand- held instrumental analysis. There are problems such as method lag, single means, low frequency, and lack of non- point sources. Therefore, there is an urgent need for new system monitoring technology, which breaks through real-time, fast, non-point source quantitative and other practical needs, and provides a reliable data source for the comprehensive simulation of the Yangtze River water system. In this context, this paper proposes a fine spectral detection and quantitative analysis technology with completely independent intellectual property rights, and develops ground- based, space- based and other system technologies and equipment. With the support of the relevant projects, the demonstration application of systematic technology was carried out, and the space-ground stereoscopic monitoring was conducted in the key sections of the main stream of the Yangtze River, the Three Gorges Demonstration Area and the Poyang Lake Demonstration Area, and good results were achieved. The monitoring data are connected to the "Yangtze River Simulator" through the cloud platform, which provides fast real-time data support for its comprehensive operation, as well as a new method and application model for the comprehensive monitoring of large-scale water systems in the future.
来源 地理学报 ,2024,79(1):45-57 【核心库】
DOI 10.11821/dlxb202401004
关键词 水质监测 ; 长江水系统 ; 精细光谱探测与计量分析技术 ; 空-地立体监测
地址

1. 中国科学院西安光学精密机械研究所, 西安, 710119  

2. 中国科学院大学, 北京, 100049  

3. 西安理工大学, 西安, 710054  

4. 中国科学院地理科学与资源研究所, 北京, 100101

语种 中文
文献类型 研究性论文
ISSN 0375-5444
学科 环境质量评价与环境监测
基金 中国科学院战略性先导科技专项
文献收藏号 CSCD:7647199

参考文献 共 21 共2页

1.  吴志广. 长江流域水资源开发保护中的关键科学和技术问题. 长江科学院院报,2021,38(4):1-6 CSCD被引 7    
2.  杨林生. 科技支撑美丽中国建设的进展和展望. 中国环境管理,2022,14(6):17-24 CSCD被引 7    
3.  夏军. 长江模拟器的理论方法与实践探索. 水利学报,2022,53(5):505-514 CSCD被引 13    
4.  罗海健. 水质在线监测技术在实验教学中的应用研究. 实验科学与技术,2021,19(2):128-131,145 CSCD被引 1    
5.  Zhao Y B. Retrieval of water quality parameters based on near-surface remote sensing and machine learning algorithm. Remote Sensing,2022,14(21):5305 CSCD被引 6    
6.  Liu H. UAV-borne hyperspectral imaging remote sensing system based on acousto-optic tunable filter for water quality monitoring. Remote Sensing,2021,13(20):4069 CSCD被引 2    
7.  Silva G M. Advances in technological research for online and in situ water quality monitoring: A review. Sustainability,2022,14(9):5059 CSCD被引 1    
8.  李月. 无人机载高光谱成像设备研究及应用进展. 测绘通报,2019(9):1-6 CSCD被引 4    
9.  王延军. 地表水自动与常规监测评价结果一致性对比分析. 环境监控与预警,2021,13(1):36-41 CSCD被引 2    
10.  雷会平. 基于光谱法的多参数水质检测算法研究与软件设计,2020 CSCD被引 1    
11.  Guo Y C. Advances on water quality detection by UV-VIS spectroscopy. Applied Sciences,2020,10(19):6874 CSCD被引 2    
12.  Inoue Y. An AOTF-based hyperspectral imaging system for field use in ecophysiological and agricultural applications. International Journal of Remote Sensing,2001,22(18):3883-3888 CSCD被引 11    
13.  Kastner F. Estimating heavy metal concentrations in Technosols with reflectance spectroscopy. Geoderma,2022,406:115512 CSCD被引 1    
14.  Wei L F. Inland waters suspended solids concentration retrieval based on PSO-LSSVM for UAV-borne hyperspectral remote sensing imagery. Remote Sensing,2019,11(12):1455 CSCD被引 6    
15.  张艳军. 三峡库区水环境风险评估与预警平台总体设计与应用. 环境科学研究,2016,29(3):391-396 CSCD被引 8    
16.  张万顺. 流域水环境水生态智慧化管理云平台及应用. 水利学报,2021,52(2):142-148 CSCD被引 20    
17.  王锦旗. 水温升高对水体性质及水生生物的影响研究进展. 水生态学杂志,2020,41(1):100-109 CSCD被引 12    
18.  Tomisaki D. Effect of phosphorus limitation on the anammox process under different nitrogen concentrations. Biochemical Engineering Journal,2023,200:109092 CSCD被引 1    
19.  李翀. 长江大保护战略下科技支撑长江生态环境治理的几点思考. 环境工程技术学报,2022,12(2):356-360 CSCD被引 5    
20.  Li X H. The color formation mechanism of the blue karst lakes in Jiuzhaigou nature reserve, Sichuan, China. Water,2020,12(3):771 CSCD被引 3    
引证文献 1

1 林良国 面向城市更新的地理空间信息技术研究现状与展望 地球信息科学学报,2024,26(4):898-914
CSCD被引 1

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号