帮助 关于我们

返回检索结果

显著性权重RX高光谱异常点检测
Saliency weighted RX hyperspectral imagery anomaly detection

查看参考文献22篇

刘嘉诚 1,2   王爽 1   刘伟华 1   胡炳樑 1  
文摘 高光谱图像异常点检测中,传统RX异常点检测算法忽略了空间相关性,背景估计不准确。本文提出了一种基于图像局部邻域光谱显著性分析的加权RX算法。该算法通过引入图像显著性分析,对基于概率密度为权重的图像背景建模进行改进,建立光谱显著性权重图,重新定义RX算法中的均值向量和协方差矩阵,并给不同的目标赋予不同的权值,达到优化背景估计的目的。利用合成高光谱数据和真实高光谱数据进行异常点检测实验,结果表明,对于同一组数据,本文算法检测到的异常点数比传统算法多,虚警率较低,有效地提高了检测率。
其他语种文摘 With the development of spectral imaging technique and its data processing technology, anomaly detection using hyperspectral data has become a popular topic. Anomaly detection refers to the search for sparse pixels of unknown spectral signals in hyperspectral imagery. Given that the anomaly detection is unsupervised, providing a priori information is necessary. Thus, anomaly detection has a strong practicality. Considering the lack of spatial correlation and low normal distribution adaptation, the traditional RX algorithm has an inaccurate background estimation. Thus, this algorithm is unsuitable for detecting hyperspectral data. In this study, a saliency weighted RX algorithm is proposed on the basis of the local neighborhood spectra of an image. When the human eye observes an image, the first object that is viewed is frequently the most significant. The significance of the saliency detection algorithm is to identify this goal. The saliency map is a 2D image of the same size as the original image to represent the significance of the corresponding pixel in the original image. In this algorithm, the image background modeling based on probability density is improved by introducing a saliency analysis method. Afterward, the spectral saliency map is established, and the mean vector and covariance matrix of the RX algorithm are redefined. Saliency weighted RX algorithm provides different weights to optimize the background estimation. Anomaly detection experiments are conducted using synthetic and real hyperspectral data. Synthetic data experimental results show that, for each target, the number of anomalies detected using the saliency weighted RX algorithm is more than that of the traditional algorithms, and the saliency weighted RX algorithm can detect anomalies with abundance below 0.1. By contrast, traditional algorithms cannot detect these anomalies. Moreover, the false alarm pixels of the traditional algorithms are distributed in various positions, whereas the saliency weighted RX algorithm concentrates on an area called a false alarm area. This area can be removed effectively by morphological filtering. Real data experimental results show that the saliency weighted RX algorithm corresponds to the largest AUC value and has the optimal detection results. The traditional RX algorithm assumes that the background model follows a multivariate Gaussian distribution and does not perform well in hyperspectral imagery. The method of saliency analysis in the field of computer vision can be effectively analyzed in the spatial domain. This phenomenon compensates for the shortcomings of the RX algorithm to ignore spatial correlation, thus detecting the anomalies synchronized in the spatial and spectral domains. The saliency weighted RX algorithm uses a saliency analysis method to provide the background and anomaly pixels with a different weight, thereby improving the adaptability of the background model. Through the experiment of synthetic and real data, the saliency weighted algorithm can improve the detection probability while reducing the false alarm rate in comparison with the traditional RX algorithm and has a certain anti-noise ability.
来源 遥感学报 ,2019,23(3):418-430 【核心库】
DOI 10.11834/jrs.20197074
关键词 异常点检测 ; 显著性 ; RX算法 ; 高光谱图像处理
地址

1. 中国科学院西安光学精密机械研究所, 中国科学院光谱成像技术重点实验室, 西安, 710119  

2. 中国科学院大学, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 1007-4619
学科 自动化技术、计算机技术
基金 国家自然科学基金 ;  中国科学院西部青年学者项目基金
文献收藏号 CSCD:6501468

参考文献 共 22 共2页

1.  Ashton E A. Algorithms for the detection of subpixel targets in multispectral imagery. Photogrammetric Engineering and Remote Sensing,1998,64(7):723-731 CSCD被引 7    
2.  Chang C I. Anomaly detection and classification for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing,2002,40(6):1314-1325 CSCD被引 49    
3.  Chang C I. Progressive band processing of anomaly detection in hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(7):3558-3571 CSCD被引 3    
4.  高昆. 基于高斯马尔科夫模型的高光谱异常目标检测算法研究. 光谱学与光谱分析,2015,35(10):2846-2850 CSCD被引 4    
5.  Goferman S. Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(10):1915-1926 CSCD被引 206    
6.  Guo Q D. Weighted-RXD and linear filter-based RXD:improving background statistics estimation for anomaly detection in hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2351-2366 CSCD被引 15    
7.  Itti L. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259 CSCD被引 911    
8.  Khazai S. Anomaly detection in hyperspectral images based on an adaptive support vector method. IEEE Geoscience and Remote Sensing Letters,2011,8(4):646-650 CSCD被引 18    
9.  李君浩. 基于视觉显著性图与似物性的对象检测. 计算机应用,2015,35(12):3560-3564 CSCD被引 1    
10.  Liu W M. Multiple-window anomaly detection for hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2013,6(2):644-658 CSCD被引 7    
11.  Molero J M. Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2013,6(2):801-814 CSCD被引 34    
12.  Reed I S. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Transactions on Acoustics, Speech, and Signal Processing,1990,38(10):1760-1770 CSCD被引 160    
13.  Stellman C M. Real-time hyperspectral detection and cuing. Optical Engineering,2000,39(7):1928-1935 CSCD被引 2    
14.  童庆禧. 高光谱遥感:原理、技术与应用,2006:40-47 CSCD被引 1    
15.  童庆禧. 中国高光谱遥感的前沿进展. 遥感学报,2016,20(5):689-707 CSCD被引 186    
16.  Xu Y. Anomaly detection in hyperspectral images based on low-rank and sparse representation. IEEE Transactions on Geoscience and Remote Sensing,2016,54(4):1990-2000 CSCD被引 46    
17.  Yu X. Comparative performance analysis of adaptive multispectral detectors. IEEE Transactions on Signal Processing,1993,41(8):2639-2656 CSCD被引 19    
18.  Yuan Y. Fast hyperspectral anomaly detection via high-order 2-D crossing filter. IEEE Transactions on Geoscience and Remote Sensing,2015,53(2):620-630 CSCD被引 9    
19.  张兵. 高光谱图像处理与信息提取前沿. 遥感学报,2016,20(5):1062-1090 CSCD被引 87    
20.  赵春晖. 高光谱遥感图像处理方法及应用,2016:261-271 CSCD被引 1    
引证文献 4

1 王志威 基于光谱空间重构的非监督最邻近规则子空间的高光谱异常检测 光子学报,2020,49(6):0630004
CSCD被引 1

2 彭娜 基于波段选择的RX改进算法 上海航天(中英文),2022,39(2):72-75
CSCD被引 0 次

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号