Ni_(59)Al_(22)V_(19)中熵合金异相界面结构及沉淀机制的微扩散相场法研究
Micro-diffusion phase-field study on heterogeneous interface structure and precipitation mechanism of Ni_(59)Al_(22)V_(19) medium entropy alloy
查看参考文献30篇
文摘
|
基于单晶格点原子占位几率描述相变过程的微扩散相场模型,从原子尺度上研究了Ni_(59)Al_(22)V_(19)中熵合金的异相界面结构与相变过程中合金微观组织演化。结果表明:Ni_(59)Al_(22)V_(19)中熵合金沉淀初期有L12和少量的DO22、 L10有序相的析出,随着时效过程进行,形成L12与DO22相并存的状态;在时效过程中出现了4种异相界面结构;相变初期,以A类界面结构为主,随着有序相的生长与分解,A类界面结构数量减少而D类结构数量增多;沉淀过程中有序畴界为L12相生长提供Al原子,最终合金平衡体系形成;沉淀过程中γ′相的沉淀机制是等成分有序化和失稳分解机制,θ相的沉淀机制为失稳分解机制;除此之外,Ni_(59)Al_(22)V_(19)中熵合金孕育期随温度升高而时效时间变久;Ni-Al第一近邻原子间相互作用势随长程序参数增加而升高且与温度成正比关系。 |
其他语种文摘
|
A micro-diffusion phase-field model based on the atom occupancy probability of single lattice point was presented to describe the phase transition process, the heterogeneous interface structure and composition evolution of Ni_(59)Al_(22)V_(19) medium entropy alloy during phase transformation at atomic scale. It is found that in the early stage of Ni_(59)Al_(22)V_(19) medium entropy alloy precipitation, L12 and a small amount of ordered phase of DO22 and L10 are precipitated. As the aging process goes on, the coexistence of L12 and DO22 is formed in the aging process and four kinds of heterogeneous interfacial structures are found. At the initial phase of phase transformation, interfacial structures of A play a dominant role. With the growth and decomposition of the ordered phase, the number of interfacial structures of A decreases while the number of interfacial structures of D increases; in the Ni_(59)Al_(22)V_(19) medium entropy alloy the ordered domain boundaries provide Al atoms for the growth of L12 during the precipitation process until the alloy reaches equilibrium. During the precipitation process, the precipitation mechanism of γ ′ phase is compositional ordering and instable decomposition mechanism, and the precipitaion mechanism of phase θ is instable; the interaction potential between Ni-Al first neighbor atoms increases with the increase of the long program parameters and is proportional to the temperature, the incubation period of medium entropy alloy in Ni_(59)Al_(22)V_(19) becomes longer with the increase of temperature. |
来源
|
航空材料学报
,2022,42(6):72-80 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000049
|
关键词
|
Ni_(59)Al_(22)V_(19)中熵合金
;
异相界面结构
;
微扩散相场法
;
有序相沉淀机制
|
地址
|
1.
中北大学材料科学与工程学院, 太原, 030051
2.
北京科技大学, 北京市材料基因工程高精尖创新中心, 北京, 100083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
国防基础预研重点项目
|
文献收藏号
|
CSCD:7399361
|
参考文献 共
30
共2页
|
1.
Yao K D. High-entropy intermetallic compound with ultra-high strength and thermal stability.
Scripta Materialia,2021,194:113674
|
CSCD被引
6
次
|
|
|
|
2.
Dada M.
Recent advances in high entropy alloys: high entropy superalloys,2021
|
CSCD被引
1
次
|
|
|
|
3.
Liao Y C. Effect of Al concentration on the microstructural and mechanical properties of lightweight Ti_(60)Al_x(VCrNb)_(40-x) medium-entropy alloys.
Intermetallics,2021,135:159518
|
CSCD被引
5
次
|
|
|
|
4.
Cheng P. Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSix high-entropy alloys containing coherent nanometer-scaled precipitates-scienceDirect.
Materials Science and Engineering: A,2020,772:139681
|
CSCD被引
1
次
|
|
|
|
5.
Pu L. Effect of adding Ag to the medium entropy SnBiIn alloy on intermetallic compound formation.
Materials Letters,2020,272:127891
|
CSCD被引
1
次
|
|
|
|
6.
Liu Y H. Revealing the microstructural evolution and mechanism during the thermomechanical treatment of polycrystalline CrCoNi mediumentropy alloy.
Journal of Alloys and Compounds,2021,870:159518
|
CSCD被引
2
次
|
|
|
|
7.
丁晨阳. VCoNi中熵合金力学性能的温度依赖性研究.
功能材料,2020,51(12):12020-12023
|
CSCD被引
1
次
|
|
|
|
8.
Zhao Y H. Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: a phase field study.
Materials & Design,2022,216:110555
|
CSCD被引
11
次
|
|
|
|
9.
Chen L Q. From classical thermodynamics to phase-field method.
Progress in Materials Science,2022,124:1-34
|
CSCD被引
34
次
|
|
|
|
10.
Tian X L. Cooperative effect of strength and ductility processed by thermomechanical treatment for Cu-Al-Ni alloy.
Materials Science and Engineering:A,2022,849:143485
|
CSCD被引
4
次
|
|
|
|
11.
Xin T. Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition.
Science Advances,2021:7
|
CSCD被引
1
次
|
|
|
|
12.
Xin T. Phase transformations in an ultralight BCC Mg alloy during anisothermal aging.
Acta Materialia,2022,239:118248
|
CSCD被引
25
次
|
|
|
|
13.
赵宇宏.
材料相变过程微观组织模拟,2010
|
CSCD被引
2
次
|
|
|
|
14.
王锟. 微观相场模型及其在合金固态相变中的应用.
稀有金属材料与工程,2019,48(11):3770-3780
|
CSCD被引
1
次
|
|
|
|
15.
Guo H J. Phase field crystal study of grain boundary structure and annihilation mechanism in low-angle grain boundary boundary.
Superlattices and Microstructures,2019,129:163-175
|
CSCD被引
8
次
|
|
|
|
16.
Hou H. Simulation of the precipitation process of ordered intermetallic compounds in binary and ternary Ni-Al-based alloys by the phase-field model.
Materials Science and Engineering: A,2009,499(1/2):204-207
|
CSCD被引
8
次
|
|
|
|
17.
杨坤. 微观相场法研究镍基合金相变时的成分演化及界面定向迁移机制.
稀有金属材料与工程,2016,45(12):3238-3244
|
CSCD被引
2
次
|
|
|
|
18.
Wang K. The partitioning behavior of dual solutes at the antiphase domain boundary in the B2 intermetallic: a microscopic phase-field study.
Journal of Alloys and Compounds,2019,824:153923
|
CSCD被引
1
次
|
|
|
|
19.
李永胜. Ni—Al-V合金有序畴界面结构的微观相场模拟.
稀有金属材料与工程,2006,35(2):200-204
|
CSCD被引
9
次
|
|
|
|
20.
Zhao Y H. Stability of phase boundary between L12-Ni3Al phases: a phase field study.
Intermetallics,2022,144:107528
|
CSCD被引
8
次
|
|
|
|
|