粤北棉花坑铀矿床矿物共生组合特征及其意义
Mineral assemblage characteristics of the Mianhuakeng uranium deposit in northern Guangdong Province and its significance
查看参考文献46篇
文摘
|
基于棉花坑矿床不同类型铀矿石中矿物共生组合关系研究,讨论了棉花坑矿床成矿作用过程中铀的沉淀富集机制。研究结果显示,棉花坑矿床铀矿体主要呈脉状充填或细脉浸染状产出;铀矿石类型包括萤石型、碳酸盐型、硅质脉型和红化型。虽然不同矿石类型中成矿期形成的脉石矿物种类存在差异,但均表现出以下共性特点:铀矿物赋存于脉状充填矿石的中心部位或两壁,或与成矿期脉石矿物相间排列;或呈细脉状、浸染状赋存于碎裂蚀变花岗岩内;与成矿期脉石矿物(主要包括方解石、萤石、微晶石英)镶嵌生长;铀矿物与黄铁矿以集合态或相对独立态密切共生,两者之间及其与成矿期脉石矿物晶体之间界线平直,晶形完好,镶嵌生长。认为棉花坑矿床铀矿石中黄铁矿与铀矿物之间不存在先后的成生关系,均为成矿流体共结晶产物;铀沉淀成矿与氧化还原作用无关,减压、温度下降以及成矿流体pH值、溶解度(饱和度)变化,是制约铀矿物以及相关脉石矿物结晶沉淀的主要因素。 |
其他语种文摘
|
Based on the relationship between uranium minerals and pyrite from different types of uranium ores in the Mianhuakeng deposit,the authors investigated the mechanism for the deposition and enrichment of uranium during the ore-forming process.The research shows that uranium orebodies in the Mianhuakeng deposit generally occur in vein-filling or vein-disseminated form.Uranium ore types include fluorite type,carbonate type,siliceous vein type and reddening type.Although different ore types have different gangue minerals formed in the mineralization period,they show common characteristics as follows:Uranium minerals in the central part or along the vein walls are alternatively arranged with gangue minerals or occur in veinlike or disseminated form in cataclastic altered granite and are inlaid with gangue minerals such as calcite,fluorite and microcrystalline quartz.Uranium minerals and pyrite are closely associated with each other in aggregate or relatively independent states,and the boundaries between them and gangue minerals in the mineralization period are straight,with good crystal type and in inlaid growth form.The aforementioned evidence indicates that there is no sequential generative relationship between pyrite and uranium minerals,and that they are all co-crystalline products of ore-forming fluid.Uranium precipitation had nothing to do with redox reaction.In contrast,decrease of pressure and temperature and the change of pH and solubility were the main factors that triggered the precipitation of uranium and gangue minerals. |
来源
|
岩石矿物学杂志
,2021,40(3):513-524 【核心库】
|
关键词
|
花岗岩型铀矿
;
矿物共生组合
;
沉淀成矿机制
;
棉花坑矿床
|
地址
|
1.
东华理工大学, 核资源与环境国家重点实验室, 江西, 南昌, 330013
2.
东华理工大学地球科学学院, 江西, 南昌, 330013
3.
中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6524 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
核工业290研究所铀矿勘查研究基金
|
文献收藏号
|
CSCD:6972881
|
参考文献 共
46
共3页
|
1.
Castor S B. Geology, geochemistry and origin of volcanic rock-hosted uranium deposits in northwestern Nevada and southeastern Oregon.
Ore Geology Reviews,2000,16:1-40
|
CSCD被引
9
次
|
|
|
|
2.
Chabiron A. Possible uranium sources for the largest uranium district associated with volcanism-The Streltsovka caldera (Transbaikalia Russia).
Mineralium Deposita,2003,38(2):127-140
|
CSCD被引
25
次
|
|
|
|
3.
Dahlkamp F J.
Uranium Ore Deposits,1993:118-122
|
CSCD被引
4
次
|
|
|
|
4.
Giblin A M. Uranium mobility in non-oxidizing brines: Field and experimental evidence.
Applied Geochemistry,1987,2:285-295
|
CSCD被引
2
次
|
|
|
|
5.
Hu R Z. Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi Province, China: Evidence from He, Ar and C isotopes.
Chemical Geology,2009,266:86-95
|
CSCD被引
82
次
|
|
|
|
6.
Jiang Y H. Trace element and Sr-Nd isotope geochemistry of fluorite from the Xiangshan uranium deposit southeast China.
Economic Geology,2006,101(8):1613-1622
|
CSCD被引
30
次
|
|
|
|
7.
Liu Z Y. Experiment on concentration mechanism of uranium in hydrothermal solutions.
Progress in Geosciences of China (1985~1988)-Paper to 28th IGC,1989:29-34
|
CSCD被引
1
次
|
|
|
|
8.
Montreuil J F. Formation of albitite-hosted uranium within IOCG systems: The Southern Breccia, Great Bear magmatic zone, Northwest Territories, Canada.
Mineral Deposit,2015,50:293-325
|
CSCD被引
2
次
|
|
|
|
9.
Parks G A. Hydrothermal solubility of uraninite.
Geochim. Cosmochim. Acta,1988,52:863-875
|
CSCD被引
2
次
|
|
|
|
10.
Pirajno F.
Ore Deposit and Mantle Plumes,2000:556
|
CSCD被引
2
次
|
|
|
|
11.
Romberger S B. Transport and deposition of uranium in hydrothermal systems at temperatures up to 300, geochemical implications.
Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources,1984:12-17
|
CSCD被引
7
次
|
|
|
|
12.
Timofeev A. Uranium transport in acidic brines under reducing conditions.
Nature Communications,2018,9(1):1469
|
CSCD被引
6
次
|
|
|
|
13.
邓平. 地幔流体与铀成矿作用:以下庄矿田仙石铀矿床为例.
地球化学,2003(6):520-528
|
CSCD被引
77
次
|
|
|
|
14.
杜乐天.
地幔流体与软流层(体)地球化学,1996:10-16
|
CSCD被引
1
次
|
|
|
|
15.
杜乐天.
中国热液铀矿基本成矿规律和一般热液成矿学,2001:57-110,151-237
|
CSCD被引
13
次
|
|
|
|
16.
范洪海. 江西相山铀矿田成矿物质来源的Nd、Sr、Pb同位素证据.
高校地质学报,2001(2):139-145
|
CSCD被引
42
次
|
|
|
|
17.
高翔. 粤北302铀矿床围岩蚀变的地球化学特征和成因研究.
岩石矿物学杂志,2011,30(1):71-82
|
CSCD被引
14
次
|
|
|
|
18.
胡瑞忠. 上升热液浸取成矿过程中铀的迁移沉淀机制探讨--以希望铀矿床为例.
地质论评,1990,36(4):317-325
|
CSCD被引
39
次
|
|
|
|
19.
黄国龙. 粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因研究.
地质学报,2014,88(5):836-849
|
CSCD被引
46
次
|
|
|
|
20.
黄国龙. 粤北地区302矿床沥青铀矿的形成时代地球化学特征及其成因研究.
矿床地质,2010,29(2):353-360
|
CSCD被引
1
次
|
|
|
|
|