Mg-Al合金在空气中燃烧时Mg的优先反应特性及Al的氮化反应机理
Preferential Reaction Characteristics of Mg and Nitridation Mechanism of Al during the Combustion of Mg-Al Alloy in Air
查看参考文献18篇
文摘
|
为了分析铝合金燃烧过程中存在的不同金属相间对氧气的竞争反应特性,采用热重-差示扫描量热(TGDSC)对镁铝二元合金的氧化性能进行分析;采用X射线衍射仪(XRD)对反应前后样品的相组成进行检测;采用扫描电子显微镜(SEM)对反应物及产物的形貌进行观测;采用自制的燃烧反应装置对镁铝合金粉在空气中的燃烧过程进行了研究。结果表明,Mg-Al合金在空气中反应时,镁与氧气的反应优先于铝与氧气的反应;在10℃/min的升温速率下,镁与氧气的优先反应不能阻碍Al的氧化,二者的氧化产物会继续反应生成MgAl_2O_4,该反应在温度高于800℃时变得更加明显;当镁铝合金发生燃烧时能观测到粒子的微爆现象,Mg与氧气的优先反应使得铝与N_2反应生成AlN;释能途径不同,使得铝的燃烧放热出现巨大的差别,当铝转化为AlN,其反应放热大大减少(约为12 kJ/g),只有其被氧化成Al_2O_3时放出热量的40%。 |
其他语种文摘
|
In order to analyze the competitive reaction of different metal phases in the combustion process of aluminum alloy,thermogravimetric differential scanning calorimetry(TG-DSC)was used to analyze the oxidation performance of Mg-Al binary alloy,and an X-ray diffractometer(XRD)was used to analyze the phase composition of the samples before and after reaction,and scanning electron microscope(SEM)was used to observe the morphology of the samples,and self-made combustion system was used to study the combustion process of Mg-Al alloy powder in the air.The results show that Mg in the alloy is oxidized faster than Al when the alloy powder is heated slowly with a rate of 10℃/min in air,and the preferential reaction of Mg couldn't block the oxidation of Al,and their products further react to form MgAl_2O_4.The formation of MgAl_2O_4 becomes more obvious when the temperature is higher than 800℃.When Mg-Al alloy is burned in air,the micro-explosion phenomenon can be observed,and only nitrogen can reach the reaction zone of liquid Al due to the preferential combustion of Mg with oxygen,and it leads to that the Al in the alloy matrix only reacts with nitrogen to form AlN.Therefore,the different reaction processes indicate that the reaction heat of Al has a great difference.When Al is converted into AlN in the combustion process of Mg-Al alloy,the reaction heat decreases greatly(about 12 kJ/g),which is only 40% of the value when Al is oxidized to Al_2O_3. |
来源
|
火炸药学报
,2022,45(2):222-228 【核心库】
|
DOI
|
10.14077/j.issn.1007-7812.202110002
|
关键词
|
物理化学
;
Mg-Al合金
;
AlN
;
优先氧化
;
氮化反应机理
;
微爆反应
|
地址
|
1.
西安近代化学研究所燃烧与爆炸技术重点实验室, 陕西, 西安, 710065
2.
南京理工大学化学与化工学院, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-7812 |
学科
|
化学;武器工业 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7210336
|
参考文献 共
18
共1页
|
1.
Xiao Liqun. The reactivity between aluminun powder and liquid phase of fuelair explosives.
Chinese Journal of Explosives &Propellants(Huozhayao Xuebao),2016,39(6):55-57
|
CSCD被引
1
次
|
|
|
|
2.
Valluri S K. Fuel-rich aluminum-nickel fluoride reactive composites.
Combustion and Flame,2019,210:439-453
|
CSCD被引
6
次
|
|
|
|
3.
Babuk V A.
Formation of condensed combustion products at the burning surface of solid rocket propellant,2015:749-776
|
CSCD被引
1
次
|
|
|
|
4.
肖立群. 含铝固体推进剂燃烧过程中铝粉团聚现象研究进展.
火炸药学报,2018,40(1):7-15
|
CSCD被引
20
次
|
|
|
|
5.
Sundaram D S. A general theory of ignition and combustion of nano-and micron-sized aluminum particles.
Combustion and Flame,2016,169:94-109
|
CSCD被引
34
次
|
|
|
|
6.
Eric Boyd. Ignition and combustion of nickel coated and uncoated Al particles in hot post-flame environment.
International Journal of Energetic Materials and Chemical Propulsion,2012,11(1):1-16
|
CSCD被引
2
次
|
|
|
|
7.
Yang Lin. Preparation and characterization of Mg-Al-B alloy (Mg_(0.5)Al_(0.5)B_2)via high-temperature sintering.
Materials (Basel),2021,14(13):3608
|
CSCD被引
2
次
|
|
|
|
8.
Sundaram D S. Combustion of nano aluminum particles(Review).
Combustion Explosion and Shock Waves,2015,51(2):173-196
|
CSCD被引
24
次
|
|
|
|
9.
Liu Lu. Modifying the ignition, combustion and agglomeration characteristics of composite propellants via Al-Mg alloy additives.
Combustion and Flame,2022,238:111926
|
CSCD被引
4
次
|
|
|
|
10.
Vellaisamy U M A. Effect of metal additives on neutralization and characteristics of AP/HTPB solid propellants.
Combustion and Flame,2020,221:326-337
|
CSCD被引
2
次
|
|
|
|
11.
Mohammed I C. Study of burning rate characteristics of propellants containing Al-Mg alloy nanopowder.
Nano Express,2020,1(2):020007(10pp)
|
CSCD被引
1
次
|
|
|
|
12.
Huag Xuefeng. Laser-induced ignition and combustion of Al-Mg alloy powder prepared by melt atomization.
Propellants,Explosives, Pyrotechnics,2020,45(10):1645-1653
|
CSCD被引
2
次
|
|
|
|
13.
Feng Yunchao. Ignition and combustion characteristics of single gas-atomized Al-Mg alloy particles in oxidizing gas flow.
Energy,2020,196:117036
|
CSCD被引
3
次
|
|
|
|
14.
Yasmine A L Y. Ignition and combustion of Al-Mg alloy powders prepared by different techniques.
Combustion and Flame,2015,162(4):1440-1447
|
CSCD被引
9
次
|
|
|
|
15.
Yasmine A L Y. Ignition and combustion of mechanically alloyed Al-Mg powders with customized particle sizes.
Combustion and Flame,2013,160(4):835-842
|
CSCD被引
9
次
|
|
|
|
16.
Xie Xiao. Preparation of aluminum nitride by combustion of a Mg-Al alloy.
Ceramics International,2019,45(15):18721-18726
|
CSCD被引
1
次
|
|
|
|
17.
Gromov A. Study of aluminum nitride formation by superfine aluminum powder combustion in air.
Journal of the European Ceramic Society,2004,24(9):2879-2884
|
CSCD被引
9
次
|
|
|
|
18.
Ao Wen. Agglomeration and combustion characteristics of solid composite propellants containing aluminum-based alloys.
Combustion and Flame,2020,220:288-297
|
CSCD被引
16
次
|
|
|
|
|