太极计划激光链路构建地面模拟控制系统研究
Research on Simulated Laser Link Construction Control System of Taiji Program
查看参考文献24篇
文摘
|
太极计划需要通过激光捕获指向系统实现两颗卫星之间超长距离(3×10~6 km)的激光链路构建,并且实现1 μrad的捕获精度以及10 nrad/ Hz(1 mHz~1 Hz)的指向抖动控制精度。空间引力波探测提出利用星敏感器(STR)、互补金属氧化物半导体(CMOS)捕获相机以及四象限光电探测器(QPD)等三级探测器逐步构建双向激光链路的方案,并最终通过差分波前传感技术(DWS)测量的高精度姿态信息来实现超稳的激光指向抖动控制。目前该方案仍处于理论论证阶段。为了测试该方案,采用实验室现有激光捕获指向一体化的光学系统以及一块ZYNQ芯片的自研板卡,尝试实现整个激光链路构建过程的全自主控制流程。实验结果表明:在大气环境下,成功自主完成了双向激光链路的构建,最终对应到实际系统望远镜前的捕获精度达到了0.07 μrad,指向控制过程的控制精度在太极计划的敏感频段内达到了9.7 nrad/ Hz,能够满足任务需求。实验成功验证了激光链路构建方案的可行性,为下一步太极计划激光链路构建控制系统工程实施阶段的板级实现奠定了基础。 |
其他语种文摘
|
Objective The space-based gravitational wave detection mission needs to realize the construction of ultra-long distance (3×10~6 km)laser link between two satellites through the laser acquisition and pointing system, and realize the capture precision of 1 μrad and the pointing jitter control of 10 nrad/ Hz at 1 mHz- 1 Hz. The laser power becomes very small after being transmitted over millions of kilometers. Ultra-long distance, ultra-low power and high precision requirements make the laser link construction process of Taiji program a great challenge. In order to realize the networking of three satellites, the whole laser link construction process needs to establish three bidirectional laser links in turn. Space-based gravitational wave detection proposes a scheme to gradually build a bidirectional laser link by using three-level detectors of star tracker (STR), complementary metal oxide semiconductor (CMOS)capture camera and quadrant photodiode (QPD), and finally realize the ultra-stable laser pointing jitter control through the highprecision attitude information measured by the differential wavefront sensing (DWS)technology. At present, the scheme is in the stage of theoretical demonstration. In order to test the scheme, we adopt the laboratory's laser acquisition and pointing integrated optical system and a card based on a ZYNQ chip, and expect to realize autonomous control of the whole laser link construction process. Methods We use ground optical experiment to simulate the actual laser link construction progress between two satellites under the laboratory conditions. The whole experiment includes two optical benches which are actually realistic restoration of Taiji program acquisition and pointing light path (Fig. 3), and they are respectively mounted on two hexapod displacement tables to simulate the adjustment of satellite attitude. To fully simulate the whole progress of the actual laser link construction, the ground optical experiment is divided into four stages: initialization, coarse acquisition, fine acquisition and laser pointing. According to the scheme of laser link construction, we design the whole progress flow control, spiral scanning control, spot centroid location and closed-loop control by Verilog, and verify every module separately. And then we use ZYNQ card to control the whole experiment. Results and Discussions The experimental results show that the bidirectional laser link is successfully constructed in the atmospheric environment. Finally, corresponding to the wavefront of the actual system's telescope, the acquisition precision reaches 0.07 μrad and the control accuracy of the final laser pointing control process reaches 9.7 nrad/ Hz in the sensitive frequency band of the Taiji program, which can meet the task requirements. The main influencing factors of the spot centroid control effect in the fine acquisition stage are the calibration error during the DWS calibration and the position error caused by the long-term drift of the manual four-axis displacement table. The internal stress change of the manual four-axis displacement table results in a large difference between the actual displacement table position and the position calibrated before the experiment in the pitch and yaw directions, which causes the position of the spot centroid during the experiment to deviate from the zero point of the hexapod displacement table. And the main factor affecting the control accuracy during the laser pointing stage is the background noise. By collecting the DWS data without controlling the hexapod displacement table when the platforms are aligned, it is found that the laser pointing precision is close to the background noise level (Fig. 13). Therefore, the background noise is the main noise source, which includes atmospheric fluctuation, temperature shift and environmental vibration. |
来源
|
中国激光
,2023,50(19):1906003 【核心库】
|
DOI
|
10.3788/CJL221193
|
关键词
|
光通信
;
空间引力波探测
;
双向激光链路构建
;
全流程自主控制
;
光斑质心定位
|
地址
|
1.
国科大杭州高等研究院, 浙江, 杭州, 310024
2.
中国科学院大学, 北京, 100049
3.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7025 |
学科
|
电子技术、通信技术 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:7588515
|
参考文献 共
24
共2页
|
1.
Abbott B P. Observation of gravitational waves from a binary black hole merger.
Physical Review Letters,2016,116(6):061102
|
CSCD被引
335
次
|
|
|
|
2.
Wanner G. Space-based gravitational wave detection and how LISA Pathfinder successfully paved the way.
Nature Physics,2019,15(3):200-202
|
CSCD被引
9
次
|
|
|
|
3.
罗子人. 中国空间引力波探测"太极计划"及"太极1号"在轨测试.
深空探测学报,2020,7(1):3-10
|
CSCD被引
42
次
|
|
|
|
4.
罗子人. 空间激光干涉引力波探测.
力学进展,2013,43(4):415-447
|
CSCD被引
57
次
|
|
|
|
5.
Luo J. TianQin: a space-borne gravitational wave detector.
Classical and Quantum Gravity,2016,33(3):035010
|
CSCD被引
168
次
|
|
|
|
6.
董全睿. 星载激光通信技术研究进展.
中国光学,2019,12(6):1260-1270
|
CSCD被引
12
次
|
|
|
|
7.
刘立人. 卫星激光通信Ⅰ链路和终端技术.
中国激光,2007,34(1):3-20
|
CSCD被引
43
次
|
|
|
|
8.
Tolker-Nielsen T. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX.
Proceedings of SPIE. 4635,2002:1-15
|
CSCD被引
7
次
|
|
|
|
9.
Wuchenich D M R. Laser link acquisition demonstration for the GRACE Follow-on mission.
Optics Express,2014,22(9):11351-11366
|
CSCD被引
5
次
|
|
|
|
10.
张若凡. 高轨卫星激光中继链路研究现状及发展趋势.
激光与光电子学进展,2021,58(5):0500001
|
CSCD被引
5
次
|
|
|
|
11.
徐淼. 空间目标多维度探测与激光通信一体化技术研究.
中国激光,2021,48(12):1206002
|
CSCD被引
12
次
|
|
|
|
12.
白杨杨. 空间激光通信组网从光端机控制技术研究.
光学学报,2021,41(14):1406001
|
CSCD被引
7
次
|
|
|
|
13.
Maghami P G. An acquisition control for the laser interferometer space antenna.
Classical and Quantum Gravity,2005,22(10):S421-S428
|
CSCD被引
2
次
|
|
|
|
14.
Cirillo F.
Controller design for the acquisition phase of the LISA mission using a Kalman filter,2007
|
CSCD被引
5
次
|
|
|
|
15.
Cirillo F. Control system design for the constellation acquisition phase of the LISA mission.
Journal of Physics: Conference Series. 154,2009:012014
|
CSCD被引
1
次
|
|
|
|
16.
Dong Y H. Principle demonstration of fine pointing control system for inter-satellite laser communication.
Science China Technological Sciences,2015,58(3):449-453
|
CSCD被引
3
次
|
|
|
|
17.
Gao R H. Laser acquisition experimental demonstration for space gravitational wave detection missions.
Optics Express,2021,29(5):6368-6383
|
CSCD被引
2
次
|
|
|
|
18.
高瑞弘.
面向空间激光干涉引力波探测的激光捕获-指向技术研究,2020
|
CSCD被引
1
次
|
|
|
|
19.
董玉辉.
面向空间激光干涉引力波探测的精密指向和弱光锁相控制技术的研究,2015:16-19
|
CSCD被引
5
次
|
|
|
|
20.
Luo Z R. Possible alternative acquisition scheme for the gravity recovery and climate experiment follow-on-type mission.
Applied Optics,2017,56(5):1495-1500
|
CSCD被引
6
次
|
|
|
|
|