Al(001)、Al(110)、Al(111)面表面能的密度泛函理论计算
DENSITY FUNCTIONAL THEORY STUDY OF SURFACE ENERGIES OF Al(001), (110)AND(111)
查看参考文献16篇
文摘
|
用密度泛函理论方法,采用超晶胞模型,计算了Al(001)、Al(110)、Al(111)面的表面能.计算表明,Al(001)面的表面能为0.87 eV,Al(110)面为1.07 eV,Al(111)面为0.76 eV.分析了表面能差异与表面电荷平均面密度的关系,表面原子层和次表面原子层的电荷面密度在s,p轨道上重新分布.表面原子层电荷密度越大,表面能越低.计算结果与已有的实验和计算值比较吻合. |
其他语种文摘
|
Surface energies of Al (OOlKAl(llOKAl(lll)surfaces were theoretically calculated us-ing density functional theory and supercell approach. The results indicated that the surface energies of Al (001), (110) and (111) are 0.87 eV, 1.07 eV and 0.76 eV, respectively. The results also showed that the surface energy is related to the average surface electronic density distribution. The electronic density of orbital s and p of the first two surface atomic layers redistributed. The higher the average surface electronic density is, the lower the surface energy is. The results are agreed with the existed da-ta of both experiments and theoretical calculations. |
来源
|
腐蚀科学与防护技术
,2005,17(1):47-49 【核心库】
|
关键词
|
表面能
;
面电荷密度
;
密度泛函理论
|
地址
|
中国科学院金属研究所, 金属腐蚀与防护国家重点实验室, 辽宁, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1002-6495 |
学科
|
金属学与金属工艺 |
基金
|
中国科学院“百人计划”项目
;
中国科学院知识创新工程重要方向项目
|
文献收藏号
|
CSCD:1906348
|
参考文献 共
16
共1页
|
1.
M Methfessel. Trends of the surface relaxations.
Phys. Rev. B,1992,46:4816
|
CSCD被引
16
次
|
|
|
|
2.
H L Skriver. Quasiparticle energy spectra and magnetic response of certain curved graphitic geometries[J].
Phys. Rev. B.,1992,46:7157
|
CSCD被引
37
次
|
|
|
|
3.
J Kollar. Surface energy and work function of the light actinides[J ].
Phys. Rev. B,1994,49:11288
|
CSCD被引
5
次
|
|
|
|
4.
A M Rodriguez. Multilayer relaxation and surface energies of fcc and bcc metals using equivalent crystal theory[J].
Surf. Sci.,1993,289:100
|
CSCD被引
7
次
|
|
|
|
5.
Xiaochun Wang. The calculation of the surface energy of high - index surfaces in metals at zero temperature[J ].
Surface Science,2004,551:179
|
CSCD被引
3
次
|
|
|
|
6.
B Mutasa. Atomistic structure of high - index surfaces in metals and alloys.
Surf. Sci,1998,415:312
|
CSCD被引
8
次
|
|
|
|
7.
T J Racker. Corrected effective - medium method.
Phys. Rev. B,1989,39:9967
|
CSCD被引
1
次
|
|
|
|
8.
L Vitos. The surface energy of metals.
Surf. Sci,1998,411:186
|
CSCD被引
76
次
|
|
|
|
9.
W Kohn. Self - consistent equations including exchange and correlation effects[J].
Phy. Rev.,1965,140:1133
|
CSCD被引
1
次
|
|
|
|
10.
M D Segall. ideas.
J.Phys.: Cond. Matt.,2002,14(11):2717
|
CSCD被引
1378
次
|
|
|
|
11.
W H Press. Vetterling.
Vetterling, Numericnl Recipes,1986
|
CSCD被引
1
次
|
|
|
|
12.
M E Straumanis. Lattice parameters and thermal expansion coefficients of Al.
Acta. Cryst. A,1971,27:549
|
CSCD被引
2
次
|
|
|
|
13.
J L Tallon. Temperature dependence of the elastic constants of aluminum[J].
J. Phys. Chem. SolidS,1979,40:831
|
CSCD被引
7
次
|
|
|
|
14.
朱梓忠. 金属铝中Si点缺陷的第一原理研究.
科学通报,1996,41:1651
|
CSCD被引
2
次
|
|
|
|
15.
A Kiejna. First - principles study of surface and subsurface O structures at Al.
Phys. Rev. B,2001,63(111):85405
|
CSCD被引
2
次
|
|
|
|
16.
Yu F Zhukovskii. On the mechanism of the interaction between oxygen and close - packed single - crystal aluminum surfaces [ J ].
J. Phys. and Chem.Solids,2003,64:1317
|
CSCD被引
4
次
|
|
|
|
|