间歇式俯仰转动扑翼的自主推进
Self-propulsion of a flapping foil powered by intermettent pitching motion
查看参考文献18篇
文摘
|
很多飞行和游动的生物采用主动驱动和被动滑行交替的运动方式。本研究通过比较间歇式和连续式驱动扑翼的自主推进性能,试图回答间歇式驱动能否节省能耗的问题。研究采用数值方法求解耦合的Navier-Stokes方程和扑翼运动的动力学方程。我们模拟了不同频率的连续式驱动以及给定频率不同占空比的间歇式驱动。结果表明,在达到相同平均推进速度条件下,如果推进速度较高间歇式驱动所需的能耗更低,如果速度较低则连续式驱动的能耗较低。我们还对比了连续式和间歇式驱动产生的不同流场结构。该研究得到的结果可以为高效仿生水下航行器的设计提供帮助。 |
其他语种文摘
|
Many animals adopt intermittent gaits(burst-and-coast or flapping-and-gliding) during flying or swimming.We compare the performances of self-propelled foils driven by intermittent and continuous pitching motions,and attempt to answer the question whether the intermittent gaits are more efficient.Numerical simulations are conducted by solving the Navier- Stokes equations together with the dynamics equations of the foil.We study cases of continuous pitching at various frequencies and also cases of intermittent pitching at a fixed frequency but different duty cycles.The results indicate that,for a given cruising speed,the continuous gait is more efficient at lower speed,while the intermittent gait is more efficient at higher speed.The different flow structures produced by the continuous and intermittent gaits are presented.The results obtained in this work can benefit the design of efficient bio-inspired underwater vehicles. |
来源
|
空气动力学学报
,2018,36(1):151-155 【核心库】
|
DOI
|
10.7638/kqdlxxb-2017.0198
|
关键词
|
扑翼
;
自主推进
;
间歇式俯仰转动
;
浸入边界方法
|
地址
|
1.
中国科学院力学研究所, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-1825 |
学科
|
航空 |
基金
|
国家自然科学基金面上项目
|
文献收藏号
|
CSCD:6197751
|
参考文献 共
18
共1页
|
1.
Haury L. Energetically efficient swimming behavior of negatively buoyant zooplankton.
Limnology and Oceanography,1976,21(6):797-803
|
CSCD被引
1
次
|
|
|
|
2.
Gleiss A C. Convergent evolution in locomotory patterns of flying and swimming animals.
Nature Communications,2011,2(1):2555-2559
|
CSCD被引
3
次
|
|
|
|
3.
Weihs D. Energetic advantages of burst swimming of fish.
Journal of Theoretical Biology,1974,48(1):215-229
|
CSCD被引
6
次
|
|
|
|
4.
Weihs D. Energetic significance of changes in swimming modes during growth of larval anchovy.
Fishery Bulletin,1980,77(3):597-604
|
CSCD被引
2
次
|
|
|
|
5.
Videler J J. Swimming movements,body structure and propulsion in cod Gadus morhua.
Symposia of the Zoological Society of London,1981,48:1-27
|
CSCD被引
2
次
|
|
|
|
6.
Videler J J. Energetic advantages of burst-and-coast swimming of fish at high speeds.
Journal of Experimental Biology,1982,97(4):169-178
|
CSCD被引
10
次
|
|
|
|
7.
Blake R W. Functional design and burst-and-coast swimming in fishes.
Canadian Journal of Zoology,1983,61(11):2491-2494
|
CSCD被引
7
次
|
|
|
|
8.
Muller U K. Hydrodynamics of unsteady fish swimming and the effect of body size:comparing the flow fields of fish larvae and adults.
Journal of Experimental Biology,2000,203(2):193-206
|
CSCD被引
7
次
|
|
|
|
9.
Fish F E. Burst-and-coast swimming in schooling fish (Notemigonus Crysoleucas)with implications for energy economy.
Comparative Biochemistry &Physiology Part A Physiology,1991,100(3):633-637
|
CSCD被引
6
次
|
|
|
|
10.
Wu G H. Kinematics,hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi).
Journal of Experimental Biology,2007,210(12):2181-2191
|
CSCD被引
10
次
|
|
|
|
11.
Yang Y. A study on flow physics of burst-and-coast swimming of koi carp (Cyprinus carpio koi) based on measurements and numerical simulations.
Journal of Aero Aqua Bio-mechanisms,2010,1(1):30-38
|
CSCD被引
4
次
|
|
|
|
12.
Chung M H. On burst-and-coast swimming performance in fishlike locomotion.
Bioinspiration &Biomimetics,2009,4(3):036001
|
CSCD被引
4
次
|
|
|
|
13.
Akoz E. Unsteady propulsion by an intermittent swimming gait.
Journal of Fluid Mechanics,2018,834:149-172
|
CSCD被引
3
次
|
|
|
|
14.
Floryan D. Forces and energetics of intermittent swimming.
Acta Mechanica Sinica,2017,33(4):725-732
|
CSCD被引
3
次
|
|
|
|
15.
Moored K. Disentangling the inviscid and viscous energy saving mechanisms of intermittent swimming.
47th AIAA Fluid Dynamics Conference,2017
|
CSCD被引
1
次
|
|
|
|
16.
Lighthilll M J. Large-amplitude elongated-body theory of fish locomotion.
Proceedings of the Royal Society of London B: Biological Sciences,1971,179(1005):125-138
|
CSCD被引
42
次
|
|
|
|
17.
Wang S Z. An immersed boundary method based on discrete stream function formulation for two-and threedimensional incompressible flows.
Journal of Computational Physics,2011,230:3479-3499
|
CSCD被引
3
次
|
|
|
|
18.
Zhu X J. Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil.
Computers &Fluids,2014,97(6):1-20
|
CSCD被引
7
次
|
|
|
|
|