深度学习在基于曲面体层片的成釉细胞瘤及牙源性角化囊肿鉴别诊断中的应用
Application of Deep Learning in Differential Diagnosis of Ameloblastoma and Odontogenic Keratocyst Based on Panoramic Radiographs
查看参考文献22篇
文摘
|
目的通过应用不同卷积神经网络模型对成釉细胞瘤及牙源性角化囊肿进行鉴别诊断。方法回顾性收集1000张成釉细胞瘤和牙源性角化囊肿患者的数字曲面体层片,选用ResNet(18、50、101)、VGG(16、19)、EfficientNet(b1、 b3、b5)深度学习模型,对训练集中的800张曲面体层片经五折交叉验证的方法训练后对测试集中的200张曲面体层片进行鉴别诊断。同时, 7名口腔放射专业医生对这200张曲面体层片进行诊断,并将二者的诊断结果进行比较。结果卷积神经网络模型的诊断准确率为82.50%~87.50%,其中EfficientNet b1准确率最高,为87.50%,各卷积神经网络模型训练集和测试集本身之间比较,准确率差异无统计学意义(P_(训练集)=0.998, P_(测试集)=0.905)。7名口腔放射专业医生(2名高年资医生、 5名低年资医生)平均诊断准确率为(70.30 ± 5.48)%,且不同年资医生之间平均诊断准确率差异无统计学意义(P = 0.883)。深度学习卷积神经网络模型的诊断准确率显著高于口腔放射专业医生的诊断准确率(P <0.001)。结论基于曲面体层片的深度学习卷积神经网络能够对成釉细胞瘤和牙源性角化囊肿做出较为准确的鉴别诊断。 |
其他语种文摘
|
Objective To evaluate the accuracy of different convolutional neural networks(CNN), representative deep learning models, in the differential diagnosis of ameloblastoma and odontogenic keratocyst, and subsequently compare the diagnosis results between models and oral radiologists. Methods A total of 1000 digital panoramic radiographs were retrospectively collected from the patients with ameloblastoma(500 radiographs)or odontogenic keratocyst(500 radiographs)in the Department of Oral and Maxillofacial Radiology, Peking University School of Stomatology. Eight CNN including ResNet(18, 50, 101), VGG(16, 19), and EfficientNet(b1, b3, b5)were selected to distinguish ameloblastoma from odontogenic keratocyst. Transfer learning was employed to train 800 panoramic radiographs in the training set through 5-fold cross validation, and 200 panoramic radiographs in the test set were used for differential diagnosis. Chi square test was performed for comparing the performance among different CNN. Furthermore, 7 oral radiologists(including 2 seniors and 5 juniors)made a diagnosis on the 200 panoramic radiographs in the test set, and the diagnosis results were compared between CNN and oral radiologists. Results The eight neural network models showed the diagnostic accuracy ranging from 82.50% to 87.50%, of which EfficientNet b1 had the highest accuracy of 87.50%. There was no significant difference in the diagnostic accuracy among the CNN models(P =0.998, P =0.905). The average diagnostic accuracy of oral radiologists was(70.30 ±5.48)%, and there was no statistical difference in the accuracy between senior and junior oral radiologists(P =0.883). The diagnostic accuracy of CNN models was higher than that of oral radiologists(P <0.001). Conclusion Deep learning CNN can realize accurate differential diagnosis between ameloblastoma and odontogenic keratocyst with panoramic radiographs, with higher diagnostic accuracy than oral radiologists. |
来源
|
中国医学科学院学报
,2023,45(2):273-279 【核心库】
|
DOI
|
10.3881/j.issn.1000-503X.15139
|
关键词
|
卷积神经网络
;
深度学习
;
曲面体层片
;
成釉细胞瘤
;
牙源性角化囊肿
|
地址
|
1.
北京大学口腔医学院口腔医院医学影像科, 北京, 100081
2.
国家口腔疾病临床医学研究中心口腔生物材料和数字诊疗装备国家工程研究中心口腔数字医学北京市重点实验室, 国家口腔疾病临床医学研究中心;;口腔生物材料和数字诊疗装备国家工程研究中心;;口腔数字医学北京市重点实验室, 北京, 100081
3.
北京大学口腔医学院口腔医院医学病理科, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-503X |
学科
|
肿瘤学 |
基金
|
北京大学百度基金
|
文献收藏号
|
CSCD:7470004
|
参考文献 共
22
共2页
|
1.
郭传瑸.
口腔颌面外科学. (3版),2021
|
CSCD被引
1
次
|
|
|
|
2.
Ariji Y. Imaging features contributing to the diagnosis of ameloblastomas and keratocystic odontogenic tumours: logistic regression analysis.
Dentomaxillofac Radiol,2011,40(3):133-140
|
CSCD被引
7
次
|
|
|
|
3.
Chai Z K. Improved diagnostic accuracy of ameloblastoma and odontogenic keratocyst on conebeam CT by artificial intelligence.
Front Oncol,2022,11:793417
|
CSCD被引
2
次
|
|
|
|
4.
Feng Y. Breast cancer cell nuclei classification in histopathology images using deep neural networks.
Int J Comput Assist Radiol Surg,2018,13(2):179-191
|
CSCD被引
2
次
|
|
|
|
5.
van Ginneken B. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.
Radiol Phys Technol,2017,10(1):23-32
|
CSCD被引
12
次
|
|
|
|
6.
Ren S. Faster R-CNN: towards real-time object detection with region proposal networks.
IEEE Trans Pattern Anal Mach Intell,2017,39(6):1137-1149
|
CSCD被引
4396
次
|
|
|
|
7.
Shichijo S. Application of convolutional neural networks in the diagnosis of helicobacter pylori infection based on endoscopic images.
EBioMedicine,2017,25:106-111
|
CSCD被引
23
次
|
|
|
|
8.
Du X. A convolutional neural network based auto-positioning method for dental arch in rotational panoramic radiography.
Conf Proc IEEE Eng Med Biol Soc. 2018,2018:2615-2618
|
CSCD被引
1
次
|
|
|
|
9.
Lee J H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm.
J Dent,2018,77:106-111
|
CSCD被引
13
次
|
|
|
|
10.
Ekert T. Deep learning for the radiographic detection of apical lesions.
J Endod,2019,45(7):917-922.e5
|
CSCD被引
7
次
|
|
|
|
11.
Farhadian M. Dental age estimation using the pulp-to-tooth ratio in canines by neural networks.
Imaging Sci Dent,2019,49(1):19-26
|
CSCD被引
2
次
|
|
|
|
12.
Vila-Blanco N. Deep neural networks for chronological age estimation from OPG images.
IEEE Trans Med Imaging,2020,39(7):2374-2384
|
CSCD被引
2
次
|
|
|
|
13.
马绪臣.
口腔颌面影像学. (2版),2014
|
CSCD被引
1
次
|
|
|
|
14.
张祖燕.
口腔颌面医学影像诊断学. (7版),2020
|
CSCD被引
4
次
|
|
|
|
15.
Minami M. Cystic lesions of the maxillomandibular region: MR imaging distinction of odontogenic keratocysts and ameloblastomas from other cysts.
AJR Am J Roentgenol,1996,166(4):943-949
|
CSCD被引
5
次
|
|
|
|
16.
Han Y. Diffusion-weighted MR imaging of unicystic odontogenic tumors for differentiation of unicystic ameloblastomas from keratocystic odontogenic tumors.
Korean J Radiol,2018,19(1):79-84
|
CSCD被引
1
次
|
|
|
|
17.
Fujita M. Diagnostic value of MRI for odontogenic tumours.
Dentomaxillofac Radiol,2013,42(5):20120265
|
CSCD被引
2
次
|
|
|
|
18.
Sugianto I. Diagnostic value of fluid attenuated inversion recovery magnetic resonance imaging for multilocular ameloblastoma.
J Hard Tissue Biol,2018,27(4):275-280
|
CSCD被引
1
次
|
|
|
|
19.
Greenspan H. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique.
IEEE Trans Med Imaging,2016,35(5):1153-1159
|
CSCD被引
47
次
|
|
|
|
20.
Poedjiastoeti W. Application of convolutional neural network in the diagnosis of jaw tumors.
Healthc Inform Res,2018,24(3):236-241
|
CSCD被引
4
次
|
|
|
|
|