中国大型射电望远镜在引力波探测方面的潜在突破
The potential breakthroughs of GW detection using future Chinese radio telescopes
查看参考文献15篇
文摘
|
中国已经建设、正在建设和将要建设成更多的射电望远镜,本文着眼于讨论这些望远镜在引力波直接探测方面的潜在突破.其中,基于最新的脉冲星噪声参数和望远镜设计指标,计算了使用不同射电望远镜以及他们的组合开展脉冲星测时观测的技术能力,在此基础上进一步计算并讨论了利用这些望远镜开展脉冲星测时阵列的可能性及其引力波探测的能力预期.研究发现,大型望远镜如贵州500 m口径球面射电望远镜和计划中的新疆奇台110 m全可动望远镜的配合将大幅度提高现有国际脉冲星阵列测时能力,建成这些望远镜之后,极有可能在短期内获得重大突破. |
其他语种文摘
|
China has built, has been building, and will have built radio telescopes. Based on the most up-to-date pulsar noise measurements and design specifications of telescopes, we focus here on investigating the capability of pulsar timing observation using individual telescopes as well as their combination. We also calculate and discuss the feasibility to create the Chinese pulsar timing array project and the expectation for gravitational wave detection. As one will note, combination of large system, such as Five-hundred-metre Aperture Spherical radio Telescope (FAST) at Guizhou and Qitai 110 m fully steerable radio telescope at Xinjiang (QTT), will significantly increase the capability of current international pulsar timing array. We thus expect the breakthroughs in the FAST-QTT era. |
来源
|
中国科学. 物理学
, 力学, 天文学,2017,47(5):059507-1-059507-6 【核心库】
|
DOI
|
10.1360/SSPMA2016-00303
|
关键词
|
脉冲星
;
引力波
|
地址
|
1.
北京大学科维里天文与天体物理研究所, 北京, 100871
2.
中国科学院新疆天文台, 乌鲁木齐, 830011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-7275 |
学科
|
机械、仪表工业 |
基金
|
国家973计划
;
国家自然科学基金
;
中国科学院战略先导
|
文献收藏号
|
CSCD:5967529
|
参考文献 共
15
共1页
|
1.
Abbott B P. Observation of gravitational waves from a binary black hole merger.
Phys Rev Lett,2016,116:061102
|
CSCD被引
345
次
|
|
|
|
2.
Sazhin M V. Opportunities for detecting ultralong gravitational waves.
Soviet Astron,1978,22:36-38
|
CSCD被引
4
次
|
|
|
|
3.
Jenet F A. Detecting the stochastic gravitational wave background using pulsar timing.
Astrophys J Lett,2005,625:L123-L126
|
CSCD被引
18
次
|
|
|
|
4.
Caballero R N. The noise properties of 42 millisecond pulsars from the European pulsar timing array and their impact on gravitational-wave searches.
Mon Not R Astron Soc,2016,457:4421-4440
|
CSCD被引
4
次
|
|
|
|
5.
Shannon R M. Gravitational waves from binary supermassive black holes missing in pulsar observations.
Science,2015,349:1522-1525
|
CSCD被引
17
次
|
|
|
|
6.
Jenet F A. Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: Current limits and future prospects.
Astrophys J,2006,653:1571-1576
|
CSCD被引
12
次
|
|
|
|
7.
Shannon R M. Gravitational-wave limits from pulsar timing constrain supermassive black hole evolution.
Science,2013,342:334-337
|
CSCD被引
8
次
|
|
|
|
8.
Van Haasteren R. On measuring the gravitational-wave background using pulsar timing arrays.
Mon Not R Astron Soc,2009,395:1005-1014
|
CSCD被引
2
次
|
|
|
|
9.
Lee K J. Model-based asymptotically optimal dispersion measure correction for pulsar timing.
Mon Not R Astron Soc,2014,441:2831-2844
|
CSCD被引
7
次
|
|
|
|
10.
Van Haasteren R. New advances in the Gaussian-process approach to pulsar-timing data analysis.
Phys Rev D,2014,90:104012
|
CSCD被引
2
次
|
|
|
|
11.
Hellings R W. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis.
Astrophys J Lett,1983,265:L39
|
CSCD被引
30
次
|
|
|
|
12.
Lee K J. Gravitational wave astronomy of single sources with a pulsar timing array.
Mon Not R Astron Soc,2011,414:3251-3264
|
CSCD被引
14
次
|
|
|
|
13.
Lentati L. Hyper-efficient model-independent Bayesian method for the analysis of pulsar timing data.
Phys Rev D,2013,87:104021
|
CSCD被引
2
次
|
|
|
|
14.
Lee K J. The optimal schedule for pulsar timing array observations.
Mon Not R Astron Soc,2012,423:2642-2655
|
CSCD被引
3
次
|
|
|
|
15.
Graham M J. A systematic search for close supermassive black hole binaries in the Catalina Real-time Transient Survey.
Mon Not R Astron Soc,2015,453:1562-1576
|
CSCD被引
4
次
|
|
|
|
|