激光选区熔化用AlSi10Mg粉末显微组织与性能
Microstructure and Properties of AlSi10Mg Powder for Selective Laser Melting
查看参考文献15篇
文摘
|
采用超音速气体雾化制备AlSi10Mg粉末,粉末经分级后通过激光选区熔化制成试块。利用金相显微镜、扫描电子显微镜、X射线衍射仪研究粉末和试块的微观组织、组成相及演变情况,通过拉伸实验测试试块的室温拉伸性能。结果表明,AlSi10Mg粉末粒径分布符合激光选区熔化工艺要求,粉末呈球形或类球形。粉末组织细小均匀,主要由α(Al)基体和(α + Si)共晶组成。试块熔池形貌清晰可见,组织均匀、致密,其致密度达到99.5%;该组织中仅存在α(Al)和极少量Si相,几乎所有合金元素均固溶于Al基体中。经室温拉伸性能测试,试块的抗拉强度达到了442 MPa。 |
其他语种文摘
|
The AlSi10Mg powder was prepared by supersonic gas atomization. After classified,the powder was fabricated into block by selective laser melting (SLM). The microstructure,phase,and evolutions of powder and block were investigated by optical microscope, scanning electron microscope and X-Ray Diffraction. The tensile properties of SLM block were tested by tensile experiments at room temperature. The results show that the size distribution of AlSi10Mg powder after classified can meet the requirements of SLM technology. The powder always is spherical and spherical-like. Meanwhile,the microstructure of powders is fine and uniform,which contain α(Al) matrix and (α + Si) eutectic. In addition,the melt pool boundaries of SLM block are legible. The microstructure is also uniform and densified,the relative density approaches to 99.5%. On the other hand,only α(Al) and few Silicon phase are detected in this condition,due to the most alloying elements are dissolved in α(Al) matrix. At room temperature,the ultimate tensile strength of SLM block reaches up to 442 MPa. |
来源
|
航空材料学报
,2018,38(1):47-53 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2017.000120
|
关键词
|
激光选区熔化
;
AlSi10Mg粉末
;
显微组织
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
北京市先进铝合金材料及应用工程技术中心, 北京市先进铝合金材料及应用工程技术中心, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:6177717
|
参考文献 共
15
共1页
|
1.
张学军. 3D打印技术研究现状和关键技术.
材料工程,2016,44(2):122-128
|
CSCD被引
114
次
|
|
|
|
2.
李瑞迪. 选择性激光熔化成形关键基础问题的研究进展.
航空制造技术,2012(5):26-31
|
CSCD被引
10
次
|
|
|
|
3.
.
中国航空材料手册:第3卷铝合金镁合金,2001:5
|
CSCD被引
1
次
|
|
|
|
4.
Buchbinder D. High power selective laser melting (HP SLM) of aluminum parts.
Physics Procedia,2011,12:271-278
|
CSCD被引
55
次
|
|
|
|
5.
Kempen K. Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization.
Materials Science and Technology,2015,31(8):917-923
|
CSCD被引
37
次
|
|
|
|
6.
Brandl E. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure,high cycle fatigue, and fracture behavior.
Materials and Design,2012,34:159-169
|
CSCD被引
58
次
|
|
|
|
7.
袁学兵. 选择性激光熔化AlSi10Mg合金粉末研究.
热加工工艺,2014,43(4):91-94
|
CSCD被引
17
次
|
|
|
|
8.
.
ASM handbook: volume 7 powder metal technologies and applications,1998:30-34
|
CSCD被引
1
次
|
|
|
|
9.
Zhou J. Mechanical response and structural development during the hot extrusion of a rapidly solidified Al-20Si-7.5Ni-3Cu-1Mg alloy powder.
Journal of Materials Science,1992,27:3856-3868
|
CSCD被引
8
次
|
|
|
|
10.
张宝昌.
有色金属及其热处理,1993:35-37
|
CSCD被引
1
次
|
|
|
|
11.
Li W. Effect of treatment on Al-Si10Mg alloy fabricated by selective laser melting: Microstructure evolution,mechanical properties and fracture mechanism.
Materials Science and Engineering: A,2016,663:116-125
|
CSCD被引
59
次
|
|
|
|
12.
Thijs L. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder.
Acta Materialia,2012,61(5):1809-1819
|
CSCD被引
129
次
|
|
|
|
13.
Wu J. Microstructure and strength of selectively laser melted AlSi10Mg.
Acta Materialia,2016,117:311-320
|
CSCD被引
37
次
|
|
|
|
14.
Kaufman J G.
Aluminum alloy castings: properties,processes,and applications,2004
|
CSCD被引
2
次
|
|
|
|
15.
Bartkowiak K. New developments of laser processing aluminium alloys via additive manufacturing technique.
Physics Procedia,2011,12(1):393-401
|
CSCD被引
28
次
|
|
|
|
|