激光冲击强化过程中蒸气等离子体压力计算的耦合模型
A coupling model for computing plasma pressure induced by laser shock peening
查看参考文献15篇
文摘
|
首先基于系统能量守恒条件,提出了一种计算蒸气等离子体压力的一维耦合计算模型。模型中不仅考虑了蒸气等离子体界面压力与质点速度的非线性效应,同时也考虑了界面烧蚀所致的运动速度,将蒸气等离子体的膨胀与约束介质的变形耦合。在耦合模型的基础上,采用显式差分计算程序与显式有限元计算程序LS-DYNA互相迭代求解的方法,对不同激光功率密度分布下的蒸气等离子体压力进行了计算。结果表明,计算结果与实验测量结果具有很好的一致性,证明了计算模型的合理性。 |
其他语种文摘
|
Pressure profile of plasma is one of the most important factors for the effects of laser shock peening.In the present research,a one-dimensional coupling model for computing plasma pressure is established based on energy conservation condition in the system,in which the interface vaporization velocity and the nonlinear relationship between the shock pressure and the surface particle velocity are considered.Then,the explicit difference program and the LS-DYNA package are used to calculate the plasma pressure for different laser power density with given time-history profile.The simulation results show a good agreement with the experimental results,which indicates the consistency of the analytical model.Therefore,an effective method is provided to predict the plasma pressure induced by laser shock peening. |
来源
|
爆炸与冲击
,2012,32(1):1-7 【核心库】
|
关键词
|
流体力学
;
蒸气等离子体压力
;
耦合计算模型
;
激光冲击强化
;
质点速度
;
界面烧蚀
|
地址
|
中国科学院力学研究所, 中国科学院水动力学与海洋工程重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-1455 |
学科
|
物理学 |
基金
|
国家自然科学基金项目
;
中国科学院科研装备研制项目
|
文献收藏号
|
CSCD:4453091
|
参考文献 共
15
共1页
|
1.
Montross C S. Laser shock processing and its effects on microstructure and properties of metal alloys: A review.
International Journal of Fatigue,2002,24(10):1021-1036
|
CSCD被引
202
次
|
|
|
|
2.
鲁金忠. 激光单次冲击LY2铝合金微观强化机制研究.
中国激光,2010,37(10):2662-2666
|
CSCD被引
29
次
|
|
|
|
3.
Lu Jinzhong. Grain refinement of LY2aluminum alloy induced by ultrahigh plastic strain during multiple laser shock processing impacts.
Acta Material,2010,58(11):3984-3994
|
CSCD被引
74
次
|
|
|
|
4.
Hu Yongxiang. Overlapping rate effect on laser shock processing of 1045steel by small spots with Nd: YAG pulsed laser.
Surface and Coatings Technology,2008,202(8):1517-1525
|
CSCD被引
17
次
|
|
|
|
5.
Fairand B P. Laser generation of high-amplitude stress waves in materials.
Journal of Applied Physics,1979,50(3):1497-1502
|
CSCD被引
43
次
|
|
|
|
6.
Fabbro R. Physical study of laser-produced plasma in confined geometry.
Journal of Applied Physics,1990,68(2):775-784
|
CSCD被引
223
次
|
|
|
|
7.
Zhang Wenwu. Microscale laser spock peening of thin films, Part 1: Experiment, modeling and simulation.
Journal of Manufacturing Science and Engineering,2004,126(1):10-17
|
CSCD被引
31
次
|
|
|
|
8.
Sollier A. Laser-matter interaction in laser shock processing.
First International Symposium on High-power Laser Macroprocessing,2003:463
|
CSCD被引
1
次
|
|
|
|
9.
Colvin J D. Computational model for a low-temperature laser-plasma driver for shockprocessing of metals and comparison to experimental data.
Physics of Plasmas,2003,10(7):2940-2947
|
CSCD被引
5
次
|
|
|
|
10.
Wu Benxin. A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments.
Journal of Applied Physics,2005,97(11):113517-113527
|
CSCD被引
8
次
|
|
|
|
11.
Ballard P.
Residual stresses induced by rapid impact-applications of laser shocking,1991
|
CSCD被引
4
次
|
|
|
|
12.
孙承纬.
激光辐照效应,2002:8-9
|
CSCD被引
1
次
|
|
|
|
13.
Johnson G. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures.
Proceedings of the 7th International Symposium on Ballistics,1983:541-547
|
CSCD被引
3
次
|
|
|
|
14.
Berthe L. Shock waves from a water-confined laser-generated plasma.
Journal of Applied Physics,1997,82(6):2826-2832
|
CSCD被引
42
次
|
|
|
|
15.
Berthe L. Wavelength dependent of laser shock-wave generation in the water-confinement regime.
Journal of Applied Physics,1999,85(11):7552-7555
|
CSCD被引
10
次
|
|
|
|
|