一种基于稀疏编码的多核学习图像分类方法
An Image Classification Approach Based on Sparse Coding and Multiple Kernel Learning
查看参考文献17篇
文摘
|
本文提出一种基于稀疏编码的多核学习图像分类方法.传统稀疏编码方法对图像进行分类时,损失了空间信息,本文采用对图像进行空间金字塔多划分方式为特征加入空间信息限制.在利用非线性SVM方法进行图像分类时,空间金字塔的各层分别形成一个核矩阵,本文使用多核学习方法求解各个核矩阵的权重,通过核矩阵的线性组合来获取能够对整个分类集区分能力最强的核矩阵.实验结果表明了本文所提出图像分类方法的有效性和鲁棒性.对Scene Categories场景数据集可以达到83.10%的分类准确率,这是当前该数据集上能达到的最高分类准确率. |
其他语种文摘
|
A novel image classification method based on sparse coding and multiple kernel learning is proposed in the paper.Traditional methods of image classification used common sparse coding but lose the spatial information.We add this spatial information by dividing the image with the spatial pyramid.With the nonlinear SVM for image classification,each level of spatial pyramid has its own kernel,and we adopt machine learning for the optimal trade-off between different kernels.A much more discriminative kernel can be seen as the linear combination of base kernels corresponding to different pyramid levels.The experiments on the benchmark dataset show the effectiveness and robustness of our method.The precision on scene categories dataset can reach 83.10%,and it is the best result comparing to the state-of-the-art work. |
来源
|
电子学报
,2012,40(4):773-779 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2012.04.025
|
关键词
|
图像分类
;
多核学习
;
稀疏编码
;
空间金字塔
|
地址
|
西北工业大学计算机学院, 陕西, 西安, 710072
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
中国博士后科学基金
|
文献收藏号
|
CSCD:4544668
|
参考文献 共
17
共1页
|
1.
Nister D. Scalable recognition with a vocabulary tree.
Proceeding of IEEE Conference on Computer Vision and Pattern Recognition,2006:2161-2168
|
CSCD被引
1
次
|
|
|
|
2.
Lazebnik S. Beyond bag of features:spatial pyramid matching for recognizing natural scene categories.
Proceeding of IEEE Conference on Computer Vision and Pattern Recognition,2006:2169-2178
|
CSCD被引
2
次
|
|
|
|
3.
Varma M. Learning the discriminative power-invariance trade-off.
Proceeding of International Conference on Computer Vision,2007:1-8
|
CSCD被引
2
次
|
|
|
|
4.
Lee H. Efficient sparse coding algorithms.
Proceeding of Advances in Neural Information Processing System,2007:801-808
|
CSCD被引
1
次
|
|
|
|
5.
Yang J. Linear spatial pyramid matching using sparse coding for image classification.
Proceeding of IEEE Conference on Computer Vision and Pattern Recognition,2009:1794-1801
|
CSCD被引
2
次
|
|
|
|
6.
Li F F.
Fifteen scene categories,2006
|
CSCD被引
1
次
|
|
|
|
7.
Bonnans J F.
Perturbation Analysis of Optimization Problems,2000
|
CSCD被引
47
次
|
|
|
|
8.
Chapelle O. Choosing multiple parameters for support vector machines.
Machine Learning,2002,46(1/3):131-159
|
CSCD被引
331
次
|
|
|
|
9.
Li F F.
The Caltech-101 object categories,2003
|
CSCD被引
1
次
|
|
|
|
10.
谢昭. 基于高斯统计模型的场景分类及约束机制新方法.
电子学报,2009,37(4):733-738
|
CSCD被引
7
次
|
|
|
|
11.
Cai H. Learning weights for codebook in image classification and retrieval.
Proceeding of IEEE Conference on Computer Vision and Pattern Recognition,2010:2320-2337
|
CSCD被引
1
次
|
|
|
|
12.
石光明. 压缩感知理论及其研究进展.
电子学报,2009,37(5):1071-1078
|
CSCD被引
11
次
|
|
|
|
13.
Wang J. Locality-constrained linear coding for image classification.
Proceeding of IEEE Conference on Computer Vision and Pattern Recognition,2010:3360-3367
|
CSCD被引
2
次
|
|
|
|
14.
刘硕研. 一种基于上下文语义信息的图像块视觉单词生成算法.
电子学报,2010,38(5):1156-1161
|
CSCD被引
25
次
|
|
|
|
15.
Zhang H. SVM-KNN:Discriminative nearest neighbor classification for visual category recognition.
Proceeding of IEEE Conference on Computer Vision and Pattern Recognition,2006:2126-2136
|
CSCD被引
1
次
|
|
|
|
16.
Griffin G.
Caltech-256 object category dataset,2007
|
CSCD被引
21
次
|
|
|
|
17.
Gehler P. On feature combination for multi-class object classification.
Proceeding of International Conference on Computer Vision,2009:221-228
|
CSCD被引
1
次
|
|
|
|
|