RCP 8.5气候变化情景下21世纪印度粮食单产变化的多模式集合模拟
Multi-model ensemble projection of crop yield of India under RCP 8.5 climate change scenario during the 21st century
查看参考文献39篇
文摘
|
基于跨部门影响模型比较计划(ISI-MIP)中20种气候模式与作物模型组合的模拟结果,预估了RCP 8.5排放情景下21世纪印度小麦和水稻单产变化。研究发现:①多模式集合模拟结果基本再现了印度小麦和水稻单产的空间差异;同时,再现了小麦和水稻单产对温度和降水变化的响应特征:与温度呈负相关,与降水呈正相关。② RCP 8.5情景下,水稻和小麦生长季温度和降水均呈增加趋势,小麦生长季的温度、降水增加幅度大于水稻。空间上,温度增加幅度自北向南逐渐减小,降水增幅则逐渐增加,并且小麦种植区升温幅度大于非种植区,降水增幅则少于非种植区,水稻种植区升温幅度小于非种植区,降水增幅则多于非种植区。③ RCP 8.5情景下,小麦和水稻单产均呈下降趋势,21世纪后半叶尤为明显。小麦单产的下降速度明显大于水稻,其中21世纪前半叶小麦和水稻单产下降速度约分别为1.3%/10a(P < 0.001)和0.7%/ 10a(P < 0.05),后半叶分别增至4.9%/10a(P < 0.001)和4.4%/10a(P < 0.001)。小麦和水稻单产变化存在明显的空间异质性,小麦单产的最大下降幅度出现在德干高原西南部,降幅约60%,水稻单产最大下降幅度出现在印度河平原北部,降幅约50%。这意味着未来气候变化情景下印度粮食供给将面临较大的挑战。 |
其他语种文摘
|
Using the multi-model ensemble projections of wheat and rice in India during the 21st century from the Inter-Sectoral Impact Model Intercomparison Project, this study assessed the future changes in crop yield under the RCP 8.5 emission scenario. The results show that the multi-model ensemble simulations generally reproduce the spatial variability in crop yield that is represented by ground measurements. Furthermore, the simulations reproduce the response of crop yield to climate changes, which is characterized by negative correlations between crop yield and temperature and positive correlations between crop yield and precipitation. Under the RCP8.5 emission scenario, temperature and precipitation during the growing season of wheat and rice will increase. Generally, temperature will increase at a higher rate than precipitation; the increases in temperature and precipitation during the wheat growing season will be stronger than that during the rice growing season. In terms of spatial dimension, the increase in temperature will be weakened gradually from the north to the south, while that of precipitation will be intensified gradually from the north to the south. Temperature increase in the wheat producing areas will be stronger than that in the wheat non-producing area, while precipitation increase in the wheat producing areas will be weaker than that in the wheat non- producing areas. However, the scenario is predicted to be reversed for the rice producing areas. In response to the climate changes, wheat and rice yields will decrease in the 21st century, particularly in the second half. The decrease in wheat yield will be greater than that of rice yield. In the first half of the 21st century, wheat and rice yields are predicted to decrease at the rates of 1.3%/10 a (P < 0.001) and 0.7%/10 a (P < 0.05), respectively. In the second half of the 21st century, they are predicted to decrease at the rates of 4.9%/10 a (P < 0.001) and 4.4%/10 a (P < 0.05), respectively. The drought stress resulting from climate warming might be the main reason for this projected yield reduction. The greatest decrease in wheat yield (as high as 60%) will occur in the southwest part of the Deccan Plateau, and the greatest decrease in rice yield (as high as 50%) will occur in the northern part of the Gangetic Plain. These findings suggest that food supply in India will face extreme challenges under the future climate change scenarios. |
来源
|
地理学报
,2019,74(11):2314-2328 【核心库】
|
DOI
|
10.11821/dlxb201911009
|
关键词
|
印度
;
粮食单产
;
多模式集合预估
;
RCP 8.5情景
;
ISI-MIP
|
地址
|
1.
中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟重点实验室, 北京, 100101
2.
中国科学院大学, 北京, 100049
3.
哈尔滨师范大学, 寒区地理环境监测与空间信息服务黑龙江省重点实验室, 哈尔滨, 150025
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
基金
|
国家重点研发计划
;
中国科学院重点部署项目
;
中国科学院地理科学与资源研究所杰出青年人才基金项目
;
中国科学院青年创新促进会项目
|
文献收藏号
|
CSCD:6597018
|
参考文献 共
39
共2页
|
1.
Godfray H C J. Food security: The challenge of feeding 9 billion people.
Science,2010,327(5967):812-818
|
CSCD被引
335
次
|
|
|
|
2.
Ministry of Agriculture.
Agricultural Statistics at a Glance 2016,2017:78-88
|
CSCD被引
1
次
|
|
|
|
3.
Birthal P S. Impact of climate change on yields of major food crops in India: Implications for food security.
Agricultural Economics Research Review,2014,27(2):145-155
|
CSCD被引
1
次
|
|
|
|
4.
Challinor A J. Crop yield reduction in the tropics under climate change: Processes and uncertainties.
Agricultural and Forest Meteorology,2008,148(3):343-356
|
CSCD被引
9
次
|
|
|
|
5.
Guiteras R.
The Impact of Climate Change on Indian Agriculture,2007:3-4
|
CSCD被引
1
次
|
|
|
|
6.
Aggarwal P K.
Applications of Systems Simulation for Understanding and Increasing Yield Potential of Wheat and Rice,2000:87-88
|
CSCD被引
1
次
|
|
|
|
7.
Annette F. Regionalised inventory of biogenic greenhouse gas emissions from European agriculture.
European Journal of Agronomy,2003,19(2):135-160
|
CSCD被引
7
次
|
|
|
|
8.
Lobell D B. Extreme heat effects on wheat senescence in India.
Nature Climate Change,2012,2(3):186-189
|
CSCD被引
51
次
|
|
|
|
9.
Mall R K. Impact of climate change on Indian agriculture: A review.
Climatic Change,2006,78(2/4):445-478
|
CSCD被引
5
次
|
|
|
|
10.
Krishnan P. Impact of elevated CO_2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies.
Agriculture, Ecosystems and Environment,2007,122(2):233-242
|
CSCD被引
24
次
|
|
|
|
11.
Mohanty M. Elevated temperature and carbon dioxide concentration effects on wheat productivity in Madhya Pradesh: A simulation study.
Journal of Agrometeorology,2015,17(2):185-189
|
CSCD被引
2
次
|
|
|
|
12.
Kumar M. Impact of climate change on crop yield and role of model for achieving food security.
Environmental Monitoring and Assessment,2016,188(8):1-14
|
CSCD被引
4
次
|
|
|
|
13.
Rathore L S. Modelling the impact of climate change on rice production in India.
Mausam,2001,52(1):263-274
|
CSCD被引
1
次
|
|
|
|
14.
Levis S. CLMcrop yields and water requirements: avoided impacts by choosing RCP 4.5 over RCP 8.5.
Climatic Change,2016,146:1-15
|
CSCD被引
1
次
|
|
|
|
15.
Rosenzweig C. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison.
Proceedings of the National Academy of Sciences,2014,111(9):3268-3273
|
CSCD被引
48
次
|
|
|
|
16.
Elguindi N. Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification.
Climatic Change,2014,122(4):523-538
|
CSCD被引
15
次
|
|
|
|
17.
Chen L. Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models.
Journal of Climate,2014,27(11):3920-3937
|
CSCD被引
22
次
|
|
|
|
18.
Liu Y. An analysis of historical and future temperature fluctuations over China based on CMIP5 simulations.
Advances in Atmospheric Sciences,2014,31(2):457-467
|
CSCD被引
3
次
|
|
|
|
19.
Warszawski L. The inter-sectoral impact model intercomparison project (ISI-MIP): Project framework.
Proceedings of the National Academy of Sciences,2014,111(9):3228-3232
|
CSCD被引
51
次
|
|
|
|
20.
Elliott J. Constraints and potentials of future irrigation water availability on agricultural production under climate change.
Proceedings of the National Academy of Sciences,2014,111(9):3239-3244
|
CSCD被引
18
次
|
|
|
|
|