基于团簇加连接原子模型对TC21钛合金的成分优化
Composition optimization of TC21 titanium alloy based on cluster-plus-glue-atom model
查看参考文献35篇
文摘
|
运用源自最成熟Ti-6Al-4V合金的双团簇成分式,解析了高损伤容限的双相TC21(Ti-6Al-2Zr-2Sn-2Mo-2Nb- 1.5Cr)钛合金成分,指出其成分式由13个α-Ti和4个β-Ti结构单元构成。与Ti-6Al-4V相比,β-Ti结构单元从5减少到4,但是引入了更多的β稳定元素,使得该合金具有更好的强塑性。在此基础上,本工作将TC21的β-Ti团簇式内各β稳定元素原子等比例配比以增加混合熵,大量增加Zr含量以进一步提升β相稳定性,设计了团簇式为α-{[Al-Ti_(12)](AlTi_2)}_(13)+ β-{[(Al-(Ti_(12)Zr_2)]Sn_(0.75)Mo_(0.75)Nb_(0.75)Cr_(0.75)}_4(原子分数)的新合金TC21Z2,相应质量分数为Ti-5.9Al-5.4Zr-2.6Sn- 2.1Mo-2.0Nb-1.1Cr。采用真空铜模倾铸工艺进行样品制备,进而研究了合金的铸态组织和拉伸力学性能。研究发现, TC21Z2铸态组织为α+少量细针状α'马氏体+少量β相,其抗拉强度约为1289 MPa,屈服强度约为1181 MPa,伸长率约为1.4%,强度和塑性均高于同样状态下TC21合金。 |
其他语种文摘
|
The composition of high-damage-tolerance dual-phase TC21 (Ti-6Al-2Zr-2Sn-2Mo-2Nb- 1.5Cr) were analyzed on the basis of the dual-cluster formula of Ti-6Al-4V, consisting of 13 α-Ti and 4 β-Ti unit. Its β-Ti unit is reduced from 5 to 4 compared with Ti-6Al-4V, while adding more β-stabilizing elements to enhance the strength and plasticity. Subsequently, the atoms of each β-stabilizing element within the β-Ti cluster formula of TC21 were proportioned equally to increase the mixing entropy, and more Zr content was increased to substantially enhance the β-phase stability, giving the cluster formula as α -{[Al-Ti_(12)](AlTi_2)}_(13)+ β-{[(Al-(Ti_(12)Zr_2)]Sn_(0.75)Mo_(0.75)Nb_(0.75)Cr_(0.75)}_4(atom fraction), named as TC21Z2, with the corresponding mass fraction of Ti-5.9Al-5.4Zr-2.6Sn-2.1Mo-2.0Nb-1.1Cr. The samples were prepared by using vacuum copper mold pouring process and the as-cast microstructure and tensile mechanical properties of the alloy were studied. Results show that the as-cast microstructure of TC21Z2 is composed of α+ α' martensite+ a small amount of β phases, and its ultimate tensile strength, yield strength and elongation are 1289, 1181 MPa and 1.4%, respectively. Its strength and plasticity are better than those of the TC21 at the same state. |
来源
|
材料工程
,2024,52(5):117-126 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000510
|
关键词
|
钛合金
;
团簇加连接原子模型
;
成分式
;
显微组织
;
力学性能
|
地址
|
1.
大连理工大学材料科学与工程学院, 三束材料改性教育部重点实验室, 辽宁, 大连, 116024
2.
沈阳铸造研究所有限公司, 高端装备轻合金铸造技术国家重点实验室, 沈阳, 110022
3.
大连交通大学材料科学与工程学院, 辽宁, 大连, 116028
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
大连市科技创新基金重点学科重大课题
;
国家重点基础研发项目
|
文献收藏号
|
CSCD:7723556
|
参考文献 共
35
共2页
|
1.
姚传生. TC21钛合金的热加工行为研究进展.
材料导报,2011,25(12):138-141
|
CSCD被引
2
次
|
|
|
|
2.
房卫萍. 损伤容限钛合金的研究进展及应用现状.
材料工程,2010,38(9):95-98
|
CSCD被引
22
次
|
|
|
|
3.
赵永庆. 高强高韧损伤容限型钛合金TC21研制.
钛工业进展,2004,21(1):22-24
|
CSCD被引
79
次
|
|
|
|
4.
张俊喜. 高强韧Ti-6Al-2Zr-2Sn-3Mo-2Nb-1Cr-0.1Si-xFe钛合金的组织和压缩性能.
材料热处理学报,2022,43(2):66-73
|
CSCD被引
3
次
|
|
|
|
5.
Ramadan N E. Effect of cold deformation and heat treatment on microstructure and mechanical properties of TC21 Ti alloy.
Transactions of Nonferrous Metals Society of China,2020,30(5):1290-1299
|
CSCD被引
10
次
|
|
|
|
6.
于雪梅. 应用人工神经网络模型构造TC21合金加工图.
塑性工程学报,2018,25(6):250-256
|
CSCD被引
1
次
|
|
|
|
7.
谭长生. 多尺度层状组织结构对TC21钛合金力学性能的影响.
稀有金属材料与工程,2021,50(12):4410-4417
|
CSCD被引
2
次
|
|
|
|
8.
Zhang Q. Texture and microstructure characterization in laser additive manufactured Ti-6Al-2Zr-2Sn-3Mo-1.5Cr-2Nb titanium alloy.
Materials & Design,2015,88(25):550-557
|
CSCD被引
9
次
|
|
|
|
9.
董闯. 固溶体中的化学结构单元与合金成分设计.
金属学报,2018,54(2):293-300
|
CSCD被引
16
次
|
|
|
|
10.
Dong C. From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses.
Journal of Physics D,2007,40:273-291
|
CSCD被引
92
次
|
|
|
|
11.
Dong C. Review of structural models for the compositional interpretation of metallic glasses.
International Materials Reviews,2019,65:286-296
|
CSCD被引
21
次
|
|
|
|
12.
Zhang S. Composition genes in materials.
Journal of Materials Informatics,2021,1(2):1-11
|
CSCD被引
2
次
|
|
|
|
13.
刘田雨. 基于α''组织设计适于激光立体成形的新型高塑性Ti-4.13Al-9.36V合金.
材料研究学报,2021,35(10):741-751
|
CSCD被引
2
次
|
|
|
|
14.
Liu T Y. Microstructure and mechanical properties of laser additive manufactured novel titanium alloy after heat treatment.
China Foundry,2021,18:574-580
|
CSCD被引
5
次
|
|
|
|
15.
Liu T Y. Design for Ti-Al-V-Mo-Nb alloys for laser additive manufacturing based on a cluster model and on their microstructure and properties.
China Foundry,2021,18:424-432
|
CSCD被引
6
次
|
|
|
|
16.
Zhu Z H. Achieving hightemperature strength and plasticity in near-α Ti-7Al-3Zr-2V alloy using cluster formula design.
Journal of Materials Research and Technology,2022,18:2582-2592
|
CSCD被引
8
次
|
|
|
|
17.
Wang Q. β-Ti Alloys with low Young's moduli interpreted by cluster-plus-glue-atom model.
Metallurgical and Materials Transactions A,2012,44:1872-1879
|
CSCD被引
2
次
|
|
|
|
18.
车晋达. 微量元素添加对Ti1100合金的高温抗氧化及耐蚀性能影响.
稀有金属材料与工程,2018,47(5):1471-1477
|
CSCD被引
3
次
|
|
|
|
19.
车晋达. 微量元素(Hf/Ta/Nb)添加对近α-Ti合金高温抗氧化性能的影响.
中国有色金属学报,2016,26(10):2086-2092
|
CSCD被引
2
次
|
|
|
|
20.
Liu T Y. Composition formulas of Ti alloys derived by interpreting Ti-6Al-4V.
Science China Technological Sciences,2021,64:1732-1740
|
CSCD被引
12
次
|
|
|
|
|