黔东南施秉白云岩上覆土壤剖面理化特征与土壤有机碳含量关系研究
A Study of Soil Physicochemical Properties in Relation to Soil Organic Carbon on Overlying Soil Profiles of Dolomite in Shibing, Southeast of Guizhou Province, China
查看参考文献49篇
文摘
|
以贵州施秉云台山典型喀斯特土壤剖面为研究对象,运用野外定点采样和室内分析的方法,探讨了土壤理化性质与有机碳含量及其相互间的耦合关系,为贵州东部地区白云岩山地土壤提供地球化学新数据。结果表明:(1)三个剖面土壤pH值主要集中在7.50~8.00之间,呈碱性,为黑色、灰黑色土壤-棕壤-黄壤碱性石灰土,土壤质地为粉粘壤土。(2)土壤剖面有机碳含量具有高度变异性,整体上表现为从表土层到底层逐渐减少。植被、土壤理化性质和剖面成土演化对土壤有机碳含量有着重要影响。(3)土壤有机碳与土壤密度和pH值有明显的线性负相关性(R~2=0.62, 0.21, n=32),与土壤有机氮呈极显著线性正相关(R~2=0.98, n=32); 土壤有机碳与不同粒径组分相关性较弱,但相对而言与土壤黏粒相关性最大,成幂指数负相关(R~2=0.22)。土壤的理化性状在很大程度上影响着土壤有机碳的含量,而土壤有机碳含量的变化又对土壤理化性质有着重要的调节作用,二者相互联系,相互耦合,共同制约着喀斯特地区土壤生态系统的演化。 |
其他语种文摘
|
The karst region in Southwestern China is one of the famous karst regions in the world. This region is considered to be an extremely fragile ecological environment due to its thin soil, slowly formation rate, coarse texture, and serious erosion, so it is vulnerable to desertification. Soil organic matter of karst area plays an important role in keeping regional soil and water, showing its critical importance in the research of karst ecosystem. We selected the typical soil profiles which located in the Yuntai Mountain, Shibing, Guizhou Province to analyze the soil organic carbon(SOC)content and soil physical-chemical properties(SPCP), and then studied the coupling relationship between each other. Our results indicate that soil pH values are mainly concentrated in the range from 7.50 to 8.00, alkaline, and the soil is alkaline calcareous soil with the color of black-brown-yellow. Based on the soil grain size fraction of the three profiles, it shows that the components are mainly distributed in the range from 1μm~50μm, which are consisted of the coarse clay, silt and coarse silt. Other components especially located in the range of coarse silt, which particle size range of 10μm~50μm, and almost all of the soil samples in this part within the scope of volume percentage of higher than 50%.The soil texture is silty clay loam. Overall, there are no big differences in compose of clay, silt and sand soil in the three calcareous soil profiles, indicating that they developed from the same parent rock and under the same conditions. However, there is an obvious difference in the particle size distribution characteristic for the same level of different soil profiles or the same soil profile of different levels, based on the influence of soil physical and chemical conditions, weathering degree and hydrogeology conditions. It is also found that the SOC content range is between 1% and 11%, with high variability, and decrease rapidly with increasing deep of soil profile. It's content mainly concentrated in the surface soil layer. Vegetation, soil physical and chemical properties and profile evolution have important effect on SOC. As shown by our results, significant and negative correlations were found between SOC and parameters of soil bulk density and pH value(R~2=0.62, 0.21, n=32).On the contrary, SOC has a very significant linear positive correlation with soil organic nitrogen(R~2=0.98, n=32).Besides, SOC has weak correlation with different particle size composition, and relatively maximum negative correlation with soil clay. As obviously manifested by these results, SPCP can affects the content of SOC in a great extent, in turn, the change of SOC can adjust the SPCP. The two factors contact each other, mutual coupling, and restrict the evolution of karst ecosystem. |
来源
|
地球与环境
,2017,45(3):267-276 【核心库】
|
关键词
|
土壤理化性质
;
粒度分级
;
土壤有机碳
;
相关性分析
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9250 |
学科
|
农业基础科学 |
基金
|
国家973计划
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:5996656
|
参考文献 共
49
共3页
|
1.
龙健. 贵州高原喀斯特环境退化过程土壤质量的生物学特性研究.
水土保持学报,2003,17(2):47-50
|
CSCD被引
45
次
|
|
|
|
2.
李龙波. 贵州喀斯特地区典型土壤有机碳垂直分布特征及其同位素组成.
生态学杂志,2012,31(2):241-247
|
CSCD被引
24
次
|
|
|
|
3.
Rasool R. Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maize-wheat system.
Soil &Tillage Research,2008,101(1/2):31-36
|
CSCD被引
44
次
|
|
|
|
4.
王英芹. 岩溶高山区不同土地利用类型土壤粒度特征.
人民长江,2009,40(3):29-30
|
CSCD被引
3
次
|
|
|
|
5.
何腾兵. 贵州乌江流域喀斯特生态系统土壤物理性质研究.
水土保持学报,2006,20(5):43-47
|
CSCD被引
10
次
|
|
|
|
6.
朱书法. δ~(13)C方法在土壤有机质研究中的应用.
土壤学报,2005,42(3):495-503
|
CSCD被引
38
次
|
|
|
|
7.
Xie X L. Soil Organic Carbon Storage in China.
Pedosphere,2004,14(4):491-500
|
CSCD被引
26
次
|
|
|
|
8.
Post W M. Soil carbon pools and world life zones.
Nature,1982,298:156-159
|
CSCD被引
552
次
|
|
|
|
9.
Wang W J. Changes in soil organic carbon, nitrogen, pH and bulk density with the development of larch(Larix gmelinii)plantations in China.
Global Change Biology,2011,17(8):2657-2676
|
CSCD被引
35
次
|
|
|
|
10.
李世奇. 世界自然遗产提名地施秉喀斯特地貌及其演化.
贵州师范大学学报(自然科学版),2012,30(3):12-17
|
CSCD被引
11
次
|
|
|
|
11.
程裕淇.
中国区域地质概论,1993:369-370
|
CSCD被引
3
次
|
|
|
|
12.
贵州省地质矿产局.
贵州省区域地质志,1987:49-66
|
CSCD被引
13
次
|
|
|
|
13.
贵州省施秉县地方志编纂委员会.
施秉县志,1997
|
CSCD被引
2
次
|
|
|
|
14.
张乾柱. 岩石地球化学特征对喀斯特峡谷形态与分布影响分析——以贵州施秉喀斯特世界自然遗产预选地为例.
西南大学学报(自然科学版),2012,34(6):114-120
|
CSCD被引
8
次
|
|
|
|
15.
刘琦. 贵州施秉白云岩溶蚀特性及孔隙特征实验研究.
地球学报,2015,36(4):413-418
|
CSCD被引
10
次
|
|
|
|
16.
杨胜元.
贵州环境地质,2008
|
CSCD被引
7
次
|
|
|
|
17.
奚旦立.
环境监测(第三版),2004:265,281
|
CSCD被引
1
次
|
|
|
|
18.
姜霞(编著).
沉积物质量调查评估手册,2012
|
CSCD被引
1
次
|
|
|
|
19.
庞奖励. 前处理过程对汉江上游谷地“古土壤”粒度测试结果的影响研究.
地理科学,2013,33(6):748-754
|
CSCD被引
11
次
|
|
|
|
20.
中国科学院南京土壤研究所.
土壤理化分析,1978
|
CSCD被引
1272
次
|
|
|
|
|