室内可见光通信系统中基于压缩感知的空移键控信号检测方法
Space Shift Keying Signal Detection Approach Based on Compressed Sensing in Indoor VLC System
查看参考文献21篇
文摘
|
针对基于空移键控(Space Shift Keying,SSK)的室内可见光通信(Visible Light Communications,VLC)系统中的信号检测,本文将其转换为稀疏信号重构问题,使得具有相对较低计算复杂度的压缩感知(Compressed Sensing, CS)稀疏重构算法成为基于SSK调制的室内VLC系统中一种很有竞争力的信号检测手段.为了满足稀疏重构的测量矩阵性质,提出了一种基于奇异值分解(Singular Value Decomposition,SVD)的测量矩阵预处理方法,在理论上保证了在室内VLC系统中使用基于CS的稀疏信号检测方法的可行性.然后通过采用CS中的正交匹配追踪(Orthogonal Matching Pursuit,OMP)和压缩采样匹配追踪(Compressive Sampling Matching Pursuit,CoSaMP)两种经典算法实现了对室内VLC系统SSK信号的检测,同时还提出了一种新的结合贪婪算法和极大似然算法的稀疏信号重构检测方法.最后,通过计算机仿真验证了该类算法在基于SSK调制的室内VLC系统中信号检测的有效性.仿真结果证实了在基于SSK调制技术的室内VLC系统中,所提的CS检测算法性能可以在实际应用场景的系统参数设置下达到比(Maximum Likelihood,ML)更好的误码率和计算复杂度. |
其他语种文摘
|
Aiming at the signal detection problem in indoor visible light communication(VLC) system based on space shift keying(SSK), in this paper, by converting signal detection into a sparse signal reconstruction problem, the sparsity signal reconstruction algorithm in compressed sensing(CS) becomes a competitive complement detection approach for its relatively low computational complexity in indoor VLC system. In order to satisfy the measurement matrix property to perform sparse signal reconstruction, a preprocessing approach of measurement matrix is proposed aided by singular value decomposition(SVD), which theoretically guarantees the feasibility of using sparse signal detection method based on CS in indoor VLC system. Then, by adopting classical orthogonal matching pursuit(OMP) algorithm and compressed sampling matching pursuit(CoSaMP) algorithm, the SSK signals are efficiently detected in the considered indoor VLC system. Meanwhile, a novel OMP combined with maximum likelihood(ML) detection algorithm is presented to detect sparse signal. Finally, the effectiveness of this algorithm in indoor VLC system based on SSK modulation is verified by computer simulations. The results show that for SSK modulation technology in VLC system with practical system parameters setting, the performance of the proposed CS detection algorithm can achieve better bit error rate and lower computation complexity than ML based detection method. |
来源
|
电子学报
,2022,50(1):36-44 【核心库】
|
DOI
|
10.12263/DZXB.20210276
|
关键词
|
可见光通信
;
空移键控
;
压缩感知
;
极大似然算法
;
信号检测
|
地址
|
1.
郑州大学信息工程学院, 河南, 郑州, 450001
2.
河南工业大学理学院, 河南, 郑州, 450001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
河南省科技攻关项目
;
河南省高校科技创新人才支持计划项目
;
国家重点研发项目
|
文献收藏号
|
CSCD:7169555
|
参考文献 共
21
共2页
|
1.
Chi N. Visible light communication in 6G: Advances, challenges, and prospects.
IEEE Vehicular Technology Magazine,2020,15(4):93-102
|
CSCD被引
19
次
|
|
|
|
2.
Jeganathan J. Space shift keying modulation for MIMO channels.
IEEE Transactions on Wireless Communications,2009,8(7):3692-3703
|
CSCD被引
33
次
|
|
|
|
3.
Popoola W O. Demonstration of the merit and limitation of generalised space shift keying for indoor visible light communications.
Journal of Lightwave Technology,2014,32(10):1960-1965
|
CSCD被引
4
次
|
|
|
|
4.
Gao Z. Near-optimal signal detector based on structured compressive sensing for massive SMMIMO.
IEEE Transactions on Vehicular Technology,2017,66(2):1860-1865
|
CSCD被引
1
次
|
|
|
|
5.
Donoho D L. Compressed sensing.
IEEE Transactions on Information Theory,2006,52(4):1289-1306
|
CSCD被引
3019
次
|
|
|
|
6.
Tropp J A. Signal recovery from random measurements via orthogonal matching pursuit.
IEEE Transactions on Information Theory,2007,53(12):4655-4666
|
CSCD被引
1126
次
|
|
|
|
7.
Deanna N. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples.
Applied and Computational Harmonic Analysis,2009,26:301-321
|
CSCD被引
363
次
|
|
|
|
8.
Yu C M. Compressed sensing detector design for space shift keying in MIMO systems.
IEEE Communications Letters,2012,16(10):1556-1559
|
CSCD被引
4
次
|
|
|
|
9.
Wu C H. OMP-based detector design for space shift keying in large MIMO systems.
IEEE Global Communications Conference,2014:4072-4076
|
CSCD被引
1
次
|
|
|
|
10.
Kallummil S. Combining ML and compressive sensing: Detection schemes for generalized space shift keying.
IEEE Wireless Communications Letters,2016,5(1):72-75
|
CSCD被引
1
次
|
|
|
|
11.
王友华. 联合稀疏信号恢复的贪婪增强贝叶斯算法.
电子学报,2016,44(4):780-787
|
CSCD被引
3
次
|
|
|
|
12.
Zhang X. Detection of generalized space shift keying signal with sparse reconstruction.
IEEE Transactions on Vehicular Technology,2017,66(6):5471-5475
|
CSCD被引
2
次
|
|
|
|
13.
Zhang L. Low-complexity sparse detector for generalised space shift keying.
Electronics Letters,2019,55(5):268-270
|
CSCD被引
3
次
|
|
|
|
14.
Gligoric K. Visible light communications-based indoor positioning via compressed sensing.
IEEE Communications Letters,2018,22(7):1410-1413
|
CSCD被引
5
次
|
|
|
|
15.
Lin B. Experimental demonstration of compressive sensing-based channel estimation for MIMO-OFDM VLC.
IEEE Wireless Communications Letters,2020,9(7):1027-1030
|
CSCD被引
4
次
|
|
|
|
16.
王惠琴. 湍流信道下光空间调制信号的压缩感知检测.
光学精密工程,2018,26(11):2669-2674
|
CSCD被引
11
次
|
|
|
|
17.
An L. Energy efficiency optimization for MIMO visible light communication systems.
IEEE Wireless Communications Letters,2020,9(4):452-456
|
CSCD被引
2
次
|
|
|
|
18.
Komine T. Fundamental analysis for visible-light communication system using LED lights.
IEEE Transactions on Consumer Electronics,2004,50(1):100-107
|
CSCD被引
201
次
|
|
|
|
19.
Zeng L. High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting.
IEEE Journal on Selected Areas in Communications,2009,27(9):1654-1662
|
CSCD被引
37
次
|
|
|
|
20.
Mostafa A. Physical-layer security for MISO visible light communication channels.
IEEE Journal on Selected Areas in Communications,2015,33(9):1806-1818
|
CSCD被引
6
次
|
|
|
|
|