快速傅里叶变换在阿秒束线光路稳定控制中的应用
Phase control and stabilization in attosecond beamline with fast Fourier transform
查看参考文献28篇
文摘
|
本文报道了将快速傅里叶变换算法应用于抽运探测系统和倍频光谱干涉系统(f-2f interferometry),对光路进行反馈控制的原理和结果,分别得到相对臂长抖动均方根1.24 nm (对应时间为4.1 as)的抽运-探测光路锁定和积分时间3 ms下相对相移均方根227 mrad的慢环载波包络相位(carrier envelop phase,CEP)锁定.这样的锁定精度可以保证产生阿秒脉冲的飞秒激光脉冲拥有稳定的CEP,并且为后续阿秒抽运探测提供了稳定的实验条件. |
其他语种文摘
|
With the unveiling of molecular and atomic dynamics, scientists crave finer and faster tools to communicate with the microworld. Attosecond pump-probe enjoys its reputation as the fastest camera, hinting ultrafast movements in the delay graph. To employ this camera, the stability and delay control should have very great accuracy comparable to the camera resolution. It is also of significant importance for stabilizing the carrier envelope phase (CEP) in few-cycle laser field. When dealing with a huge quantity of data, conventional Fourier transform algorism is challenging in high-speed control. Here we put forward the efficient calculation method, fast Fourier transform (FFT) algorism in Mach-Zehnder interferometer for arm length locking and f-2f for CEP locking. In the interferometer locking, 532 nm continuous wave laser is used in the Mach-Zehnder interferometer, and the phase of the FFT term corresponding to the delay between the two arms of the interferometer serves as a feedback signal on piezo transducer (PZT) in the delay line to reduce the change of the arm length. In the CEP control experiment, data to be analyzed are the f-2f spectrum interference fringes recorded by the spectrometer. The CEP values are obtained from the first order of FFT module output of the integrated spectrum interference fringes, and a labview program examines the relative phase drift and sends a feedback voltage signal to the PZT through the proportion integration differentiation module to compensate slow CEP drift after the chirped pulse amplification system by changing the insert length of a prism pair. The results show that the root mean square (RMS) of the arm length difference is 1.24 nm (4.1 attosecond for light to travel) per meter in the interferometer locking over 12 h, and the RMS of CEP is 227 mrad under 3 ms integration time in the CEP locking over 20 min. These results are able to meet the requirement of the accuracy for attosecond pulse generation and attosecond pump-probe experiments. We also use FFT to stabilize the CEP and relative time simultaneously in the waveform synthesis for 8 h (Huang P, Fang S, Gao Y, Zhao K, Hou X, Wei Z 2019 Appl. Phys. Lett. 115 031102), the phase-locking system results in a CEP stability of 280 mrad and a relative time stability of 110 as at a repetition rate of 1 kHz. These results imply that the FFT is versatile and reliable in ultrafast control. |
来源
|
物理学报
,2019,68(21):214204 【核心库】
|
DOI
|
10.7498/aps.68.20191164
|
关键词
|
快速傅里叶变换
;
光路锁定
;
载波包络相位锁定
|
地址
|
1.
西安电子科技大学物理与光电工程学院, 西安, 710071
2.
中国科学院物理研究所, 北京凝聚态物理国家研究中心, 北京, 100190
3.
中国科学院大学, 北京, 100049
4.
中国科学院西安光学精密机械研究所, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3290 |
学科
|
物理学 |
基金
|
国家重点研发计划
;
国家自然科学基金重大项目
;
国家自然科学基金重点项目
;
国家自然科学基金
;
中国科学院仪器研制项目
;
中国科学院前沿科学重点研究计划
;
中国科学院青年创新促进会项目
|
文献收藏号
|
CSCD:6625012
|
参考文献 共
28
共2页
|
1.
Bloembergen N.
Rev. Mod. Phys,1999,71:283
|
CSCD被引
5
次
|
|
|
|
2.
Auston D.
Top. Appl. Phys,1988,60:183
|
CSCD被引
1
次
|
|
|
|
3.
Drescher M.
Science,2001,291:5510
|
CSCD被引
1
次
|
|
|
|
4.
Zhao K.
Opt. Lett,2012,37:3891
|
CSCD被引
89
次
|
|
|
|
5.
Li J.
Nat. Commun,2017,8:186
|
CSCD被引
65
次
|
|
|
|
6.
Gaumnitz T.
Opt. Express,2017,25:27506
|
CSCD被引
91
次
|
|
|
|
7.
Itatani J.
Phys. Rev. Lett,2002,88:173903
|
CSCD被引
53
次
|
|
|
|
8.
Eppink A.
Rev. Sci. Instrum,1997,68:3477
|
CSCD被引
98
次
|
|
|
|
9.
Dorner R.
Phys. Rep,2000,330:95
|
CSCD被引
41
次
|
|
|
|
10.
Luu T.
Nature,2015,521:498
|
CSCD被引
33
次
|
|
|
|
11.
Goulielmakis E.
Nature,2010,466:739
|
CSCD被引
67
次
|
|
|
|
12.
Jones D.
Science,2000,288:635
|
CSCD被引
172
次
|
|
|
|
13.
Schibli T.
Opt. Lett,2003,28:947
|
CSCD被引
3
次
|
|
|
|
14.
Chini M.
25 th IEEE Photonics Conference Burlingame,2012:622
|
CSCD被引
1
次
|
|
|
|
15.
Kaldun A.
Science,2016,354:738
|
CSCD被引
10
次
|
|
|
|
16.
Ishii N.
Opt. Express,2019,27:11447
|
CSCD被引
6
次
|
|
|
|
17.
Cooley J.
Math. Comp,1965,19:297
|
CSCD被引
202
次
|
|
|
|
18.
Seres E.
Phys. Rev. B,2016,94:165125
|
CSCD被引
3
次
|
|
|
|
19.
Feng X.
Phys. Rev. Lett,2009,103:183901
|
CSCD被引
44
次
|
|
|
|
20.
Pertot Y.
Science,2017,355:264
|
CSCD被引
20
次
|
|
|
|
|