不同多重比较校正方法在脑功能影像数据分析中的有效性
The validity of different multiple comparison correction methods in the analysis of brain function image data
查看参考文献24篇
文摘
|
目的通过比较脑影像数据分析中不同多重比较校正方法的脑激活检出率和假阳性率来探讨不同校正方法的有效性。方法基于真实的任务态(包括强、弱两种刺激条件,n=20)和静息态功能磁共振数据(n=32),用脑影像数据分析软件SPM和SnPM13中的多重比较校正方法进行脑激活分析,并对结果从激活检出率和假阳性率两个方面进行比较。结果基于体素或峰值点的校正方法假阳性率较低,当校正后P<0.05时,假阳性被试的比例分别为0.19和0.16,假阳性体素个数分别为404和2448,但激活检出率也较低,适合强激活情况;而基于团块的校正方法则相反,当校正后P<0.05时,假阳性被试的比例分别为0.34和0.38,假阳性体素个数分别为7 870和8 320,适合弱激活情况;组水平统计可有效降低假阳性率。结论在应用中应根据研究目的及数据情况选择适合的校正方法,以平衡激活检出率和假阳性率。 |
其他语种文摘
|
Objective To explore the effectiveness of different multiple comparisons correction methods by comparing the detection rate and false positive rate of brain activation analysis using functional magnetic resonance imaging (fMRI) data. Methods On the basis of task-based fMRI dataset (including low-intensity and high-intensity stimuli condition,n=20) and resting-state fMRI dataset(n=32),brain activation results were corrected by multiple comparsion correction methods in SPM and SnPM13 software, and the activation detection rate and false positive rate were compared with different correction methods. Results Voxel-or peak-based correction methods had relatively low false positive rate. When P<0.05 after correction, the proportion of the subjects with false-positive were 0.19 and 0.16,and the number of false-positive voxels were 404 and 2 448, respectively. But the two methods had low detection rate, which were more suitable for detecting strong activation. While cluster-based correction methods had relative high detection rate and high false positive rate. When P<0.05 after correction,the proportion of the subjects with false-positive were 0.34 and 0.38,and the number of false-positive voxels were 7 870 and 8 320, respectively. And thus they were more suitable for detecting weak activation. Group-level analysis could effectively reduce false positive rate. Conclusion In practice, researchers should choose a suitable correction method based on their specific research objectives and data to achieve a balance between the detection rate and false positive rate. |
来源
|
中华行为医学与脑科学杂志
,2019,28(10):941-946 【扩展库】
|
DOI
|
10.3760/cma.j.issn.1674-6554.2019.10.015
|
关键词
|
功能磁共振
;
脑激活
;
多重比较校正
;
假阳性率
;
激活检出率
|
地址
|
1.
天津医科大学医学影像学院, 300203
2.
中国科学院心理健康重点实验室, 中国科学院心理健康重点实验室, 北京, 100101
3.
中国科学院大学心理学系, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-6554 |
学科
|
医药、卫生 |
基金
|
国家重点研发计划
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:6614172
|
参考文献 共
24
共2页
|
1.
Nichols T. Controlling the familywise error rate in functional neuroimaging: a comparative review.
Stat Methods Med Res,2003,12(5):419-446
|
CSCD被引
2
次
|
|
|
|
2.
Durnez J. Multiple testing in fMRI: an empirical case study on the balance between sensitivity,specificity, and stability.
Bio J,2014,56(4):649-661
|
CSCD被引
1
次
|
|
|
|
3.
Bennett C M. Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: an argument for multiple comparisons correction.
Neuroimage,2010,47:S125-S125
|
CSCD被引
1
次
|
|
|
|
4.
Loop M S. Testing for clustering at many ranges inflates family-wise error rate (FWE).
Int J Health Geogr,2015,14(1):4
|
CSCD被引
1
次
|
|
|
|
5.
Narum S R. Beyond Bonferroni:less conservative analyses for conservation genetics.
Conservation Genetics,2006,7(5):783-787
|
CSCD被引
6
次
|
|
|
|
6.
Benjamini Y. The control of the false discovery rate in multiple testing under dependency.
Ann Statist,2001,29(4):1165-1188
|
CSCD被引
133
次
|
|
|
|
7.
Bennett C M. The principled control of false positives in neuroimaging.
Soc Cogn Affect Neurosci,2009,4(4):417-422
|
CSCD被引
2
次
|
|
|
|
8.
Carp J. The secret lives of experiments: methods reporting in the fMRI literature.
Neuroimage,2012,63(1):289-300
|
CSCD被引
3
次
|
|
|
|
9.
Brooks J C. Resolving the brainstem contributions to attentional analgesia.
J Neurosci,2017,37(9):2279-2291
|
CSCD被引
4
次
|
|
|
|
10.
Jackson J B. Adaptive coding in the human brain: distinct object features are encoded by overlapping voxels in frontoparietal cortex.
Cortex,2018,108:25-34
|
CSCD被引
1
次
|
|
|
|
11.
Su Q. Brain regions preferentially responding to transient and iso-intense painful or tactile stimuli.
Neuroimage,2019,192:52-65
|
CSCD被引
4
次
|
|
|
|
12.
Mouraux A. The search for pain biomarkers in the human brain.
Brain,2018,141(12):3290-3307
|
CSCD被引
7
次
|
|
|
|
13.
Bardeen J M. The statistics of peaks of Gaussian random fields.
Astrophysical Journal,1985,304(1):15-61
|
CSCD被引
2
次
|
|
|
|
14.
Chumbley J. Topological FDR for neuroimaging.
Neuroimage,2010,49(4):3057-3064
|
CSCD被引
2
次
|
|
|
|
15.
Chumbley J R. False discovery rate revisited:FDR and topological inference using Gaussian random fields.
Neuroimage,2009,44(1):62-70
|
CSCD被引
4
次
|
|
|
|
16.
Welvaert M. A review of fMRI simulation studies.
PLoS One,2014,9(7):e101953
|
CSCD被引
1
次
|
|
|
|
17.
Greve D N. A survey of the sources of noise in fMRI.
Psychometrika,2013,78(3):396-416
|
CSCD被引
1
次
|
|
|
|
18.
Worsley K J. A general statistical analysis for fMRI data.
Neuroimage,2002,15(1):1-15
|
CSCD被引
5
次
|
|
|
|
19.
Eklund A. Does parametric fMRI analysis with SPM yield valid results? An empirical study of 1484 rest datasets.
Neuroimage,2012,61(3):565-578
|
CSCD被引
1
次
|
|
|
|
20.
姚洪娇. 左右利手成年人脑白质结构差异的磁共振成像及弥散张量成像研究.
中华行为医学与脑科学杂志,2018,27(12):1057-1062
|
CSCD被引
3
次
|
|
|
|
|