镁合金自修复涂层研究进展
Self-healing Coatings Form Agnesium Alloys: A Review
查看参考文献47篇
文摘
|
镁合金的耐蚀性较差,使用过程常需要防护涂层。然而,涂层在使用过程中不可避免地遭到破坏,亟需开发自修复涂层以防止涂层破坏处的局部腐蚀。结合国内外在自修复涂层尤其是镁合金自修复涂层领域的研究成果,总结了自修复涂层的类型,包括化学转化膜型、掺杂型、填充型、微容器型、层层组装型和超分子本质修复型等。其中化学转化膜型承载的修复剂有限;掺杂型工艺简单,但可能降低涂层的稳定性;填充型可以减少修复剂对涂层稳定性的影响,但是可能降低层间结合力;微容器型可以阻隔涂层基体和修复剂,但需要满足多种条件;层层组装型能承载更多修复剂且修复过程更加智能;超分子本质修复型可以实现多次修复,但是修复过程常需要外部能量输入。通过比较各类涂层的特点,为研究者设计自修复涂层提供参考,并指出自修复涂层的设计需要根据实际情况,综合各类涂层的特点,完成修复剂的成功封装与释放,在保证涂层屏蔽性的基础上,赋予涂层自修复能力。 |
其他语种文摘
|
The corrosion resistance of magnesium alloys is poor, and coatings are required for actual applications. However, coatings are inevitably damaged during use. Thus, self-healing coatings shall be developed to avoid local corrosion of damaged spot on the coatings. By combining research achievements home and abroad in self-healing coating, especially for magnesium alloys, types of self-healing coatings including ichemical conversion coatings, mixed coatings, pore-filled coatings, micro-container coatings, layer-by-layer-assembled coatings and supramolecular intrinsic healing coatings were summarized. Chemical conversion coatings could only bear limited healing agents; mixed coating could be prepared by simple process but it might deteriorate stability of the coatings; pore-filled coatings could reduce the impact of healing agents on the coatings stability, but it may weaken the adhesion between porous coating and top coating; micro-container coatings could isloate healing agents from coating substrates, but it should meet many conditions; layer-by-layer-assembled coatings could bear more healing agents and its healing process was more intelligent; intrinsic supramolecular polymer could heal the same place for several times, but the healing process usually required external energy input. The characteristics of all self-healing coatings were compared to provide reference for researchers in designing self-healing coatings. In addition, the self-healing coatings should be designed based on the actual demands and self-healing agents should be sealed and released smoothly by allowing for characteristics of various coatings, so as to provide good self-healing capability for coatings while the shielding property was guaranteed. |
来源
|
表面技术
,2016,45(12):28-35 【扩展库】
|
DOI
|
10.16490/j.cnki.issn.1001-3660.2016.12.005
|
关键词
|
自修复
;
涂层
;
镁合金
;
腐蚀
;
设计
|
地址
|
中国科学院金属研究所, 中国科学院核用材料与安全评价重点实验室, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-3660 |
学科
|
金属学与金属工艺 |
基金
|
辽宁省百千万人才工程项目
;
国家973计划
|
文献收藏号
|
CSCD:5888278
|
参考文献 共
47
共3页
|
1.
孟树昆.
中国镁工业进展,2012:254-295
|
CSCD被引
1
次
|
|
|
|
2.
宋光铃.
镁合金腐蚀与防护,2006:20-56
|
CSCD被引
6
次
|
|
|
|
3.
王新印. 镁及镁合金析氢的研究现状.
装备环境工程,2015,12(4):129-141
|
CSCD被引
11
次
|
|
|
|
4.
Ghali E. General and Localized Corrosion of Magnesium Alloys: A Critical Review.
Journal of Materials Engineering and Performance,2013,22(10):2875-2891
|
CSCD被引
8
次
|
|
|
|
5.
Obrien P. The Chemistry Underlying Chromate Toxicity.
Transition Metal Chemistry,1995,20(6):636-642
|
CSCD被引
7
次
|
|
|
|
6.
许飞. 自修复智能涂料研究进展:概念、作用机理及应用.
中国涂料,2014,29(8):38-45
|
CSCD被引
6
次
|
|
|
|
7.
Hamdy A S. Novel Smart Stannate Based Coatings of Self-healing Functionality for AZ91D Magnesium Alloy.
Electrochimica Acta,2013,97:296-303
|
CSCD被引
10
次
|
|
|
|
8.
Carneiro J. Chitosan-based Self-healing Protective Coatings Doped with Cerium Nitrate for Corrosion Protection of Aluminum Alloy 2024.
Progress in Organic Coatings,2012,75(1/2):8-13
|
CSCD被引
7
次
|
|
|
|
9.
武婷婷.
自愈合涂层的制备及其防腐蚀性能的研究,2013:3-9
|
CSCD被引
1
次
|
|
|
|
10.
White S R. Autonomic Healing of Polymer Composites.
Nature,2001,409(6822):794-797
|
CSCD被引
342
次
|
|
|
|
11.
Song Y K. Sunlight-induced Self-healing of a Microcapsule-type Protective Coating.
ACS Applied Materials & Interfaces,2013,5(4):1378-1384
|
CSCD被引
21
次
|
|
|
|
12.
Zong Q F. Active Deposition of Bis (8-hydroxyquinoline) Magnesium Coating for Enhanced Corrosion Resistance of AZ91D Alloy.
Corrosion Science,2014,89:127-136
|
CSCD被引
9
次
|
|
|
|
13.
Galio A F. Inhibitor-doped Sol-gel Coatings for Corrosion Protection of Magnesium Alloy AZ31.
Surface & Coatings Technology,2010,204(9/10):1479-1486
|
CSCD被引
16
次
|
|
|
|
14.
Yang N. A Solving-reprecipitation Theory for Self-healing Functionality of Stannate Coating with a High Environmental Stability.
Electrochimica Acta,2015,174:1192-1201
|
CSCD被引
7
次
|
|
|
|
15.
曲爱兰. 仿生自修复防腐涂层的研究进展.
涂料工业,2012,42(4):71-75
|
CSCD被引
6
次
|
|
|
|
16.
Pommiers S. Alternative Conversion Coatings to Chromate for the Protection of Magnesium Alloys.
Corrosion Science,2014,84:135-146
|
CSCD被引
23
次
|
|
|
|
17.
Hiromoto S. Self-healing Property of Hydroxyapatite and Octacalcium Phosphate Coatings on Pure Magnesium and Magnesium Alloy.
Corrosion Science,2015,100:284-294
|
CSCD被引
10
次
|
|
|
|
18.
Hamdy A S. Assessment of a One-step Intelligent Self-healing Vanadia Protective Coatings for Magnesium Alloys in Corrosive Media.
Electrochimica Acta,2011,56(5):2493-2502
|
CSCD被引
14
次
|
|
|
|
19.
Hamdy A S. Smart Self-healing Anti-corrosion Vanadia Coating for Magnesium Alloys.
Progress in Organic Coatings,2011,72(3):387-393
|
CSCD被引
8
次
|
|
|
|
20.
Hamdy A S. Vanadia-based Coatings of Self-repairing Functionality for Advanced Magnesium Elektron ZE41 Mg-Zn-rare Earth Alloy.
Surface & Coatings Technology,2012,206(17):3686-3692
|
CSCD被引
7
次
|
|
|
|
|