3D打印成形Ti-6Al-4V合金的组织和力学性能分析
Microstructures and Tensile Behavior of 3D Printed Ti-6Al-4V Alloy Sintered by Electron Beam Melting: An Experimental Study
查看参考文献14篇
文摘
|
采用3D打印方法制得Ti-6Al-4V合金形成梯度组织,通过实验测试方法对其组织以及拉伸力学性能进行测试分析。研究结果表明:各区域形成了不同尺寸与分布形态的β晶粒。试样形成了清晰的层带间界线,相邻层带间界线距离约2.5 mm。各个高度处都形成了片层组织,不同部位的α片层具有明显不同的尺寸。在各个高度处的试样拉伸测试得到的屈服强度基本一致,而拉伸强度由底部的842 MPa增大至顶部的895 MPa,同时断裂伸长率上升。合金顶端形成了较多位错,中间部位的位错密度发生了显著减小,到底部区域时位错已经很少。45°方向试样达到了最高的屈服/拉伸强度,强度最低的是Z方向试样; X和Y方向试样具备较高断裂延伸率,之后是45°方向试样,最小的是Z方向试样。 |
其他语种文摘
|
The microstructures and tensile behavior,of the 3D-printed,electron beam melted ( EBM)Ti-6Al- 4V alloy-plate ( 20 mm × 10 mm × 10 mm)with texture-gradient,were investigated with X-ray diffraction( XRD), scanning /transmission electron microscopy( SEM/TEM)and mechanical probes. Quite a few well-defined parallel “ribbons”,2.5 mm wide and formed with the lamellar layers,piled-up bottom up and comprising β-phased grains with different sizes and distributions,showed up,the boundary of which possibly originated from the thermal cycling of surface by e-beam. As the bottom-up height increased,the average size of β-phased grains rapidly-slowly increased, but the thickness of α-phased flakes rapidly decreased. As the height increased,the tensile strength increased from 842 to 895 MPa,accompanied by an increase of the elongation-at-break. A descending order of dislocation- defect density exists: the top>> the middle>> the bottom. Moreover,the anisotropic distributions of yield /tensile strengths and elongation-at-break were measured. |
来源
|
真空科学与技术学报
,2020,40(1):103-107 【扩展库】
|
DOI
|
10.13922/j.cnki.cjovst.2020.01.18
|
关键词
|
电子束快速成形
;
Ti-6Al-4V合金
;
显微组
;
拉伸性能
|
地址
|
1.
黄河水利职业技术学院机械工程学院, 开封, 475000
2.
中国科学院金属研究所, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-7126 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:6654098
|
参考文献 共
14
共1页
|
1.
黄卫东. 如何理性看待增材制造(3D打印)技术.
新材料产业,2013,36(8):9-12
|
CSCD被引
10
次
|
|
|
|
2.
张人佶. 快速制造技术的发展现状及其展望.
航空制造技术,2010,26(7):26-29
|
CSCD被引
2
次
|
|
|
|
3.
Suo Hongbo. Microstructure and Mechanical Properties of Ti-6AI-4V by Electron Beam Rapid Manufacturing.
Rare Metal Materials and Engineering,2014,43(4):780-785
|
CSCD被引
12
次
|
|
|
|
4.
Lu S L. Massive Transformation in Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting.
Acta Mater,2016,104:303
|
CSCD被引
18
次
|
|
|
|
5.
刘楠. 扫描策略及束流参数对TC4合金电子束快速成形过程的影响.
热加工工艺,2015,44(12):47-51
|
CSCD被引
6
次
|
|
|
|
6.
李海宁. 电子束快速铸造涡轮叶片组织与性能分析研究.
热加工工艺,2014,43(15):93-95
|
CSCD被引
3
次
|
|
|
|
7.
Tan X P. Graded Microstructure and Mechanical Properties of Additive Manufactured Ti-6Al-4V Via Electron Beam Melting.
Acta Mater,2015,97:1-8
|
CSCD被引
41
次
|
|
|
|
8.
Waryoba D R. Microtexture in Additively Manufactured Ti-6Al-4V Fabricated Using Directed Energy deposition.
Mater Sci Eng. A,2018,734:149-155
|
CSCD被引
4
次
|
|
|
|
9.
Hrabe N. Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated Using Electron Beam Melting (EBM), Part 1: Distance From Build Plate and Part Size.
Mater Sci Eng. A,2013,573:264-272
|
CSCD被引
13
次
|
|
|
|
10.
国家发改委. 国家增材制造产业发展推进计划.
电加工与模具,2015,42(1):68-70
|
CSCD被引
1
次
|
|
|
|
11.
Li W Y. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate.
J Mater Sci Technol,2019,35:790-801
|
CSCD被引
13
次
|
|
|
|
12.
Carroll B E. Anisotropic Tensile Behavior of Ti-6Al-4V Components Fabricated with Directed Energy Deposition Additive Manufacturing.
Acta Mater,2015,87:309-318
|
CSCD被引
111
次
|
|
|
|
13.
Liu Z. Effect ofα Texture on the Tensile Deformation Behavior of Ti-6Al-4V Alloy Produced Via Electron Beam Rapid Manufacturing.
Mater Sci Eng,2019(A742):508-517
|
CSCD被引
1
次
|
|
|
|
14.
Suo H B. Microstructure and Mechanical Properties of Ti-6AI-4V by Electron Beam Rapid Manufacturing.
Rare Met Mater Eng,2014,43:780-789
|
CSCD被引
12
次
|
|
|
|
|