基于直射太阳光红外吸收光谱技术的大气中CH_4柱浓度遥测研究
Remote sensing of CH_4 column concentration in atmosphere based on direct-sun infrared absorption spectroscopy
查看参考文献15篇
文摘
|
介绍了一种基于直射太阳光红外吸收光谱技术的遥测系统,并利用该系统在合肥地区进行了连续观测。从太阳吸收光谱中测量了整层大气透过率,采用逐线积分方法模拟计算了整层大气透过率,基于非线性最小二乘光谱反演算法从实测整层大气透过率中反演了甲烷气体柱浓度和氧气柱浓度,并以氧气柱浓度为内标函数获得了甲烷干空气柱体积混合比,精密度优于2%。将本系统测量的2012年9月25日12:00~15:00 CH_4干空气柱体积混合比均值与此时段过境本站点区域的日本温室气体卫星的CH_4观测结果进行了比较,两者偏差小于1%。可见,该系统和方法是一种有效的甲烷气体柱浓度探测系统和方法,具有较高精度。 |
其他语种文摘
|
A remote sensing system was developed based on direct-sun infrared absorption spectroscopy, which was running continuously in Hefei, Anhui. The total atmospheric transmittance was measured from the solar absorption spectrum and modeled by line-by-line calculation. The column concentrations of methane and oxygen were inversed from measured total atmospheric transmittance by nonlinear least squares spectral inversion algorithm. The column concentration of oxygen was used as internal standard function to obtain column-average dry-air mole fractions of methane and the precision was better than 2%. The column-average dry-air mole fractions of methane, from 12:00 to 15:00 on September 25,2012,were compared with methane results observed by Japanese greenhouse-gases satellite over this site during the same period, showing that the relative deviation was less than 1%. Obviously, this system and algorithm are an effective way to detect methane column concentration with higher precision. |
来源
|
量子电子学报
,2014,31(1):18-24 【核心库】
|
关键词
|
大气光学
;
甲烷
;
柱浓度
;
遥测
;
红外吸收光谱技术
|
地址
|
中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-5461 |
学科
|
物理学 |
基金
|
国家科技支撑计划项目
;
中国科学院战略性先导科技专项
;
国家自然科学基金
|
文献收藏号
|
CSCD:5062832
|
参考文献 共
15
共1页
|
1.
Qin Dahe. Latest advances in climate change sciences: Interpretation of the synthesis report of the IPCC fourth assessment report.
气候变化研究进展,2007,3(6):311-314
|
CSCD被引
2
次
|
|
|
|
2.
Yao Bo. Preparation of mixed standards for high accuracy CO_2/CH_4/CO measurements.
环境化学,2013,32(2):307-312
|
CSCD被引
1
次
|
|
|
|
3.
Chen Bihui. Greenhouse gas and its affect on weather.
成都信息工程学院学报,2006,21(1):123-127
|
CSCD被引
1
次
|
|
|
|
4.
Fang Shuangxi. CH_4 concentrations and the variation characteristics at the four WMO/GAW background stations in China.
环境科学,2012,23(9):2917-2923
|
CSCD被引
2
次
|
|
|
|
5.
Liu Lixin. Characteristics of atmospheric CH4 concentration variations at four national baseline observatories in China.
气候变化研究进展,2009,5(5):285-290
|
CSCD被引
2
次
|
|
|
|
6.
Zang Kunpeng. A new system for calibration and propagation of mixed CO_2 and CH4 standards.
环境化学,2011,30(2):511-516
|
CSCD被引
1
次
|
|
|
|
7.
Zhou Lingxi. Progress in the study of background greenhouse gases at Waliguan observatory.
气象学报,2007,65(3):458-468
|
CSCD被引
2
次
|
|
|
|
8.
Zhou Lingxi. Preliminary results on network observation of greenhouse gases at China GAW stations.
应用气象学报,2008,19(6):641-645
|
CSCD被引
2
次
|
|
|
|
9.
Qu Yan. Comparison of atmospheric CO_2 observed by GOSAT and two ground stations in China.
International Journal of Remote Sensing,2013,34(11):3938-3946
|
CSCD被引
11
次
|
|
|
|
10.
Suto Hiroshi. Airborne SWIR FTS for GOSAT validation and calibration.
Proceedings of SPIE,7106,2008:71060M
|
CSCD被引
1
次
|
|
|
|
11.
Kuai L. Profiling tropospheric CO_2 using Aura TES and TCCON instruments.
Atmospheric Measurement Techniques,2013,6(1):63-79
|
CSCD被引
2
次
|
|
|
|
12.
Ru Fei. Evaluation of retrieval errors of greenhouse gas concentration from GOSAT.
遥感信息,2013,28(1):65-70
|
CSCD被引
1
次
|
|
|
|
13.
Petri C. Remote sensing of CO_2 and CH4 using solar absorption spectrometry with a low resolution spectrometer.
Atmospheric Measurement Techniques,2012,5(7):1627-1635
|
CSCD被引
1
次
|
|
|
|
14.
Jin Ling. Application of SOF-FTIR method to measuring ammonia emission flux of chemical plant.
光谱学与光谱分析,2010,30(6):1478-1481
|
CSCD被引
1
次
|
|
|
|
15.
Guo Ruipeng. Measurement of total atmospheric spectral transmittance by solar irradiance.
量子电子学报,2006,23(5):736-740
|
CSCD被引
2
次
|
|
|
|
|