帮助 关于我们

返回检索结果

一类具有垂直传染与脉冲免疫的SEIR传染病模型的全局分析
GLOBAL ANALYSIS OF AN SEIR EPIDEMIC DISEASE MODEL WITH VERTICAL TRANSMISSION AND PULSE VACCINATION

查看参考文献18篇

刘开源 1   陈兰荪 2  
文摘 考虑了一个具有垂直传染与积分时滞的SEIR传染病动力学模型.分析了该模型在脉冲免疫接种条件下的动力学行为,获得了传染病灭绝的充分条件,进而运用脉冲时滞泛函微分方程理论,获得了含有时滞的系统持久性的充分条件,并且证明了积分时滞与脉冲免疫能对模型的动力学行为产生显著的影响.
其他语种文摘 In this paper, an SEIR epidemic disease model with integral delay and vertical transmission is considered, and dynamics behaviors of the model under pulse vaccination are analyzed. The sufficient condition for infection-extinction is obtained. Then, by using the theory on delay functional and impulsive differential equation theory, the sufficient condition of the permanence for the system with time delay is given. Finally, it is shown that time delays and pulse vaccination can bring obvious effects on the dynamics behaviors of the model.
来源 系统科学与数学 ,2010,30(3):323-333 【核心库】
关键词 垂直传染 ; 脉冲免疫 ; 持久性 ; 积分时滞 ; 全局吸引性
地址

1. 鞍山师范学院数学系, 鞍山, 114007  

2. 大连理工大学应用数学系, 辽宁, 大连, 116024

语种 中文
文献类型 研究性论文
ISSN 1000-0577
学科 数学
基金 国家自然科学基金
文献收藏号 CSCD:3860846

参考文献 共 18 共1页

1.  D'Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model. Mathematical Biosciences,2002,179(1):57-72 CSCD被引 22    
2.  Li Michael Y. Global dynamics of an SEIR epidemic model with vertical transmission. SIAM Journal on Applied Mathematics,2001,62(1):58-69 CSCD被引 1    
3.  Meng Xinzhu. Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination. Applied Mathematics and Computation,2007,186(1):516-529 CSCD被引 6    
4.  Fine P M. Vectors and vertical transmission:An epidemiologic perspective. Annals of the New York Academy of Sciences,1975,266(11):173-194 CSCD被引 5    
5.  Busenberg S. Analysis of a model of a vertically transmitted disease. Journal of Mathematical Biology,1983,17(3):305-329 CSCD被引 4    
6.  Cook K L. Vertical transmission diseases:Nonlinear Phenomena in Mathematical Sciences,1982 CSCD被引 1    
7.  Meng Xinzhu. The dynamics of a new SIR epidemic model concerning pulse vacci-nation strategy. Applied Mathematics and Computation,2008,197(2):582-597 CSCD被引 9    
8.  Lu Zhonghua. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Mathematical and Computer Modelling,2002,36(9):1039-1057 CSCD被引 13    
9.  D' Onofrio Alberto. On pulse vaccination strategy in the SIR epidemic model with vertical trans-mission. Applied Mathematics Letters,2005,18(7):729-732 CSCD被引 1    
10.  Nokes D. The control of childhood viral infections by pulse vaccination. IMA Journal Mathematics Applied Biology Medication,1995,12(1):29-53 CSCD被引 3    
11.  Zeng Guangzhao. Complexity and asymptotical behavior of a SIRS epidemic model with proportional implse vaccination. Advances in Complex Systems,2005,8(4):419-431 CSCD被引 3    
12.  Beretta E. Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Analysis:Theory,Methods and Applications,2001,47(6):4107-4115 CSCD被引 2    
13.  Wang Wendi. Global behavior of an seirs epidemic model with time delays. Applied Mathematics Letters,2002,15:423-428 CSCD被引 25    
14.  Takeuchi Yasuhiro. Global asymptotic properties of a delay SIR epidemic model with finite incubation times. Nonlinear Analysis,2000,42(6):931-947 CSCD被引 2    
15.  Ma Wanbiao. Global stability of an SIR epidemic model with time delay. Applied Mathematics Letters,2004,17(10):1141-1145 CSCD被引 10    
16.  Beretta Edoardo. Global asymptotic stability of an SIR epi-demic model with distributed time delay. Nonlinear Analysis,2001,47(6):4107-4115 CSCD被引 2    
17.  Lakshmikantham V. Theory of Impulsive Differential Equations,1989 CSCD被引 304    
18.  Beretta Edoardo. Global stability of an SIR epidemic model with time delays. Journal of Mathematical Biology,1995,33:250-260 CSCD被引 1    
引证文献 4

1 单秀丽 具有非线性传染率和预防接种的SEIR 传染病模型的全局稳定性 福州大学学报. 自然科学版,2014,42(3):367-370,375
CSCD被引 0 次

2 赵明 具有饱和接触率的SIQRS预防接种模型的控制策略 吉林大学学报. 理学版,2016,54(2):171-176
CSCD被引 0 次

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号