圆球诱发斜爆轰波的数值研究
NUMERICAL STUDY OF THE OBLIQUE DETONATION INITIATION INDUCED BY SPHERES
查看参考文献29篇
文摘
|
斜爆轰发动机是飞行器在高马赫数飞行条件下的一种新型发动机,具有结构简单、成本低和比冲高等优点. 但是斜爆轰发动机的来流马赫数范围广,来流条件复杂,为实现斜爆轰波的迅速、可靠引发,采用钝头体来诱发. 利用Euler 方程和氢氧基元反应模型,对超声速氢气/空气混合气体中圆球诱导的斜爆轰流场进行了数值研究. 不同于楔面诱发的斜爆轰波,球体首先会在驻点附近诱发正激波/爆轰波,然后在稀疏波作用下发展为斜激波/爆轰波. 模拟结果显示,经过钝头体压缩的预混气体达到自燃温度后,会出现两种流场:当马赫数较低时,由于稀疏波的影响,燃烧熄灭,钝头体下游不会出现燃烧情况;而当马赫数较高时,燃烧阵面能传到下游.分析表明,当钝头体的尺度较小时,驻点附近的能量不足以诱发爆轰波,只会形成明显的燃烧带与激波非耦合结构;当钝头体的尺度较大时,流场中不会出现燃烧带与激波的非耦合现象,且这一特征与马赫数无关. 通过调整球体直径,获得了激波和燃烧带部分耦合的燃烧流场结构,这一流场结构在楔面诱发的斜爆轰波中并不存在,说明稀疏波与爆轰波面的相互作用是决定圆球诱发斜爆轰波的关键. |
其他语种文摘
|
The oblique detonation wave engine is a new kind of engine which has a simple structure, low cost, and high specific impulse. In order to ensure the initiation, blunt body is used to induce the oblique detonation wave. The oblique detonation wave flow field induced by spheres in supersonic hydrogen/air mixture is numerically simulated, based on the Euler equations and a detailed hydrogen-oxygen chemical reaction model. Unlike the oblique detonation wave induced by a wedge, the reacting flow around a sphere is much more complex. First, a normal shock wave/detonation wave is formed, then oblique shock wave/detonation wave is developed in the presence of a rarefaction wave. The numerical simulation results show that after the gases being compressed by the blunt body and reaching the auto-ignition temperature, two kinds of flowfileds will appear. When Mach numbers are low, the combustion will be quenched and can not appear downstream of the blunt body due to the influence of the rarefaction wave. When Mach numbers are high, combustion can spread to the downstream region. When the scales of blunt body are small, energy around the stationary point is not enough to induce detonation initiation and an obvious decoupling of combustion and shock wave is formed. As the sphere becomes large enough, decoupling of combustion and shock wave will not appear in the flow and this feature is indpendent of the Mach number. By adjusting the spheric diameter, the flow structures with partial coupling of shock wave and combustion zone was obtained which does not exist in a wedgy-induced oblique detonation. The present investigations suggest that the interaction between rarefaction wave and detonation wavefront is the key issue for detonation initiation induced by a spheric body. |
来源
|
力学学报
,2017,49(2):268-273 【核心库】
|
DOI
|
10.6052/0459-1879-16-143
|
关键词
|
斜爆轰
;
氢氧
;
起爆
;
熄爆
|
地址
|
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:5951732
|
参考文献 共
29
共2页
|
1.
董刚. 氢气-空气混合物中瞬态爆轰过程的二维数值模拟.
高压物理学报,2004,18(1):40-46
|
CSCD被引
15
次
|
|
|
|
2.
Lin W. Experimental study on propagation mode of H_2/air continuously rotating detonation wave.
International Journal of Hydrogen Energy,2015,40(4):1980-1993
|
CSCD被引
24
次
|
|
|
|
3.
Voland R T. X-43A hypersonic vehicle technology development.
Acta Astronautica,2006,59(1/5):181-191
|
CSCD被引
40
次
|
|
|
|
4.
林志勇. 预混超声速气流斜激波诱导脱体爆轰研究.
航空动力学报,2009,24(1):50-54
|
CSCD被引
4
次
|
|
|
|
5.
Rudy W. Experimental determination of critical conditions for hydrogen-air detonation propagation in partially confined geometry.
International Journal of Hydrogen Energy,2016:1-8
|
CSCD被引
1
次
|
|
|
|
6.
Wang C. Parallel adaptive mesh refinement method based on WENO finite di erence scheme for the simulation of multi-dimensional detonation.
Journal of Computational Physics,2015,298:161-175
|
CSCD被引
6
次
|
|
|
|
7.
Zhang Z. Numerical studies of multi-cycle acetyleneair detonation induced by shock focusing.
Procedia Engineering,2015,99:327-331
|
CSCD被引
2
次
|
|
|
|
8.
王成. 障碍物对氢氧预混气体爆轰波传播的影响.
庆祝中国力学学会成立50周年暨中国力学学会学术大会,2007
|
CSCD被引
1
次
|
|
|
|
9.
Li C. Detonation structures behind oblique shocks.
Phys Fluids,1994,6:1600-1611
|
CSCD被引
35
次
|
|
|
|
10.
Viguier C. Onset of oblique detonation waves: comparison between experimental and numerical results for hydrogen-air mixtures.
Proc Combust Inst,1997,26:3023-3031
|
CSCD被引
15
次
|
|
|
|
11.
Choi J Y. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation.
Proc Combust Inst,2007,31:2473-2480
|
CSCD被引
30
次
|
|
|
|
12.
Teng H H. Numerical study on unstable surfaces of oblique detonations.
Journal of Fluid Mechanics,2014,744:111-128
|
CSCD被引
23
次
|
|
|
|
13.
Teng H H. Evolution of cellular structures on oblique detonation surfaces.
Combustion and Flame,2015,162(2):470-477
|
CSCD被引
26
次
|
|
|
|
14.
Teng H H. On the transition pattern of the oblique detonation structure.
Journal of Fluid Mechanics,2012,713:659-669
|
CSCD被引
31
次
|
|
|
|
15.
Zhang Y. Numerical study on initiation of oblique detonations in hydrogen-air mixtures with various equivalence ratios.
Aerospace Science and Technology,2016,49:130-134
|
CSCD被引
8
次
|
|
|
|
16.
Wang T. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture.
Physics of Fluids,2015,27(9):096101
|
CSCD被引
12
次
|
|
|
|
17.
Lehr H F. Experiments on shock-Induced combustion.
Astronautica Acta,1972,17:589-597
|
CSCD被引
34
次
|
|
|
|
18.
Kaneshige M J. Oblique detonation stabilized on a hypervelocity projectile.
26th Symp. (Int.) on Combustion,1996:3015
|
CSCD被引
1
次
|
|
|
|
19.
Ju Y. Numerical and theoretical studies on detonation initiation by a supersonic projectile.
Symposium on Combustion,1998,27(2):2225-2231
|
CSCD被引
3
次
|
|
|
|
20.
Maeda S. Visualization of the nonsteady state oblique detonation wave phenomena around hypersonic spherical projectile.
Proc Combust Inst,2011,33:2343-2349
|
CSCD被引
13
次
|
|
|
|
|