华北地区平流雾过程湍流输送及演变特征
Characteristics of Turbulent Transfer and Its Temporal Evolution during an Advection Fog Period in North China
查看参考文献22篇
文摘
|
利用2006年2月在天津市南部地区开展的大气湍流观测资料,分析了平流雾生消过程中湍流输送及演变特征.结果表明:平流雾生消过程中,大气稳定度参数数值主要集中在弱不稳定到弱稳定范围内,且多呈现弱不稳定状态.雾前,大气呈弱不稳定状态,热量的垂直和水平输送短时加强,且水平输送较垂直输送更显著;雾生成初期,大气呈弱稳定层结,湍流动量和热量的垂直及水平输送均很弱;雾中,大气多呈弱不稳定状态,稳定度参数、动量、热量及水平与垂直热通昔之比值随时间均呈多峰形振荡,随着雾的消散,大气由弱不稳定逐渐演变为稳定状态;雾后,低层大气再次呈现弱小稳定层结特征,动量和热量输送呈单峰形日变化特征.平流雾生消过程中,热量的水平输送随不稳定度增强而迅速减小;大气呈稳定层结时,热量的水平输送显著大于垂直输送,其比值约为2.同时,摩擦速度、水平与垂直热通量之比值呈多峰形振荡,振幅分别可达1.2 m/s及50. |
其他语种文摘
|
Based on the observational atmospheric turbulent data obtained in the south of Tianjin City in February 2006,the characteristics of turbulent transfer and its temporal evolution have been analyzed during an advection fog process.The results show that the absolute value of stability parameter is mainly in the range less than one,and the unstable condition is dominant during the advection fog.Before the fog formation,the atmosphere is slightly unsta-ble;heat transfer in horizontal and vertical directions intensifies in a short period;the horizontal heat transfer is much larger than the vertical transfer.In the stage of fog formation,it turns to be stable,with turbulent momentum and heat fluxes being weak in every direction.During the fog,the atmosphere is mainly unstable with the multi-peak undulation characteristics for the temporal variations of stability parameter,turbulence momentum,heat fluxes,and the ratio of heat fluxes in horizontal and vertical directions.The slight instability gradually changes to slight stability as the fog dissipate. The lower atmosphere is unstable after fog with the momentum and heat fluxes showing a diur-nal variation feature (large at noon and weak at night).During the fog process,horizontal heat fluxes decrease quickly with the stability parameter increasing.The var-iations of the standard deviations of wind speed with the stability parameter satisfy the 1/3 power law.Under the stable condition,the ratio of heat fluxes in horizontal and vertical directions is approximately equal to 2,and the standard deviations of wind speed increase with stability while the standard deviation of potential temperature de-creases with stability.Both the friction velocity and the ratio of heat fluxes in horizontal and vertical directions show multi-peak distributions during the fog,with their peaks reaching 1.2 m/s and 50,respectively. |
来源
|
大气科学
,2010,34(2):440-448 【核心库】
|
关键词
|
平流雾
;
稳定度参数
;
湍流通量
;
华北地区
|
地址
|
1.
北京大学物理学院大气科学系, 北京, 100871
2.
天津市气象局, 天津, 300074
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-9895 |
学科
|
大气科学(气象学) |
基金
|
国家自然科学基金
;
天津市自然科学基金
;
国家863计划
;
公益性行业(气象)科研专项
;
北京区域气象中心科技创新基金
|
文献收藏号
|
CSCD:3832468
|
参考文献 共
22
共2页
|
1.
Argentini S. Case studies of the wintertime convective boundary-layer structure in the urban area of Milan,Italy.
Bound.-Layer Meteor,1999,93:253-267
|
CSCD被引
3
次
|
|
|
|
2.
Bott A. A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics.
Journal of the Atmospheric Sciences,1990,47:2153-2166
|
CSCD被引
17
次
|
|
|
|
3.
Brown R. A numerical study of radiation fog with an explicit formulation of the microphysics.
Quarterly Journal of the Royal Meteorological Society,1980,106:781-802
|
CSCD被引
10
次
|
|
|
|
4.
Caughey S J. Vertical components of turbulence in convective conditions.
Adv.Geophy s A,1974,18A:125-130
|
CSCD被引
1
次
|
|
|
|
5.
Derbyshire H. Nieuswtadt's stable boundary layer revisited.
Quarterly Journal of the Royal Meteorological Society,1990,116:127-158
|
CSCD被引
1
次
|
|
|
|
6.
Duynkerke P G. Turbulence,radiation and fog in Dutch sta-ble boundary layers.
Bound.-Layer Meteor,1999,90:447-477
|
CSCD被引
14
次
|
|
|
|
7.
Giaunini L. Estimation of flux parameters from sodar wind profiles.
Atmos.Envi-ron,1997,31:1307-1313
|
CSCD被引
1
次
|
|
|
|
8.
黄玉生. 西双版纳冬季雾的微物理结构及演变过程.
气象学报,2000,58(6):715-725
|
CSCD被引
40
次
|
|
|
|
9.
李子华. 西南地区和长江下游雾的时空分布和物理结构.
地理学报,1992,47(3):242-251
|
CSCD被引
27
次
|
|
|
|
10.
李子华. 重庆市区冬季雾滴谱特征.
南京气象学院学报,1995,18(1):46-51
|
CSCD被引
27
次
|
|
|
|
11.
刘熙明. 白洋淀水陆不均匀地区能量平衡特征分析.
大气科学,2008,32(6):1411-1418
|
CSCD被引
8
次
|
|
|
|
12.
Malhi Y S. The significance of the dual solutions for heat flu-xes measured by the temperature fluctuation method in stable con-ditions.
Bound.-Layer Meteor,1995,74:389-396
|
CSCD被引
4
次
|
|
|
|
13.
Nakanishi M. Large-eddy simulation of radiation fog.
Bound.-Layer Meteor,2000,94:461-493
|
CSCD被引
14
次
|
|
|
|
14.
Nishikawa T. Radiative heat transfer and hydrostatic stability in nocturnal fog.
Bound.-Layer Me-teor,2004,113:273-286
|
CSCD被引
1
次
|
|
|
|
15.
Plelke R A. Turbulence characteristics alongseveral towers.
Bound.-Layer Meteor,1970,1:115-130
|
CSCD被引
1
次
|
|
|
|
16.
Roth M. Turbulent transfer relationships over an urban sur-face.Ⅱ:Integral statistics.
Quarterly Journal of the Royal Meteorological Society,1993,119:1105-1120
|
CSCD被引
18
次
|
|
|
|
17.
Wyngaard J C. Local free convection,similarity,and the budgets of shear stress and heat flux.
Journal of the Atmospheric Sciences,1971,28:1171-1182
|
CSCD被引
26
次
|
|
|
|
18.
吴兑. 南岭大瑶山高速公路浓雾的宏微观结构与能见度研究.
气象学报,2007,65(3):406-415
|
CSCD被引
42
次
|
|
|
|
19.
吴彬贵. 天津南部地区平流雾过程塔层气象要素特征分析.
北京大学学报(自然科学版),2008,44(5):39-45
|
CSCD被引
1
次
|
|
|
|
20.
涂钢. 半干旱区不同下垫面近地层湍流通量特征分析.
大气科学,2009,33(4):719-725
|
CSCD被引
20
次
|
|
|
|
|