23Co14Ni12Cr3MoE(A-100)钢的研究进展
Topics on Applied Basic Theory Research of 23Co14Ni12Cr3MoE(A-100) Steel
查看参考文献17篇
文摘
|
从23Co14Ni12Cr3MoE(简称A-100)钢开坯锻造与基本力学性能的关系、材料热工艺引起的晶粒度变化与基本力学性能的关系、二次硬化析出规律、疲劳性能等几个方面阐述A-100钢的基本特点。在300M钢确立的多次镦拔大锻比开坯的基础上,研究形成了高温均质化处理和第一火次大变形的开坯技术,由此奠定了A-100钢开坯锻造的技术基础。A-100钢断裂韧度更易受到热变形工艺参数的影响, 1140 ℃及以上温度加热后20%以内的小变形导致晶粒粗大甚至出现混晶,降低断裂韧度。低温锻造变形后,A-100钢的二次硬化规律明显变化,抗拉强度峰值温度后移至468 ℃,过时效随温度的升高,强度降低缓慢。A-100钢具有循环硬化特征,疲劳裂纹扩展性能优于300M钢; 3.5%NaCl盐水的腐蚀环境对A-100钢的高周疲劳性能有显著的弱化作用。 |
其他语种文摘
|
The basic features of A-100 steel,such as relationship between cogging process and mechanical properties,relationship among the forging process,grain size and mechanical properties,secondary hardening,and fatigue properties were discussed. The hightemperature homogenization and high deformation at first step technique were developed on the foundation of multiple upsetting and stretching,high forging ratio technique used for 300M steel,and became the technique foundation of cogging process in A-100 steel. The fracture toughness of A-100 steel was tended to be influenced by hot working process. The grain size grew heavily,and mixed grain structure was appeared after heating at 1140 ℃ and above with deformation amount below 20%,the fracture toughness was also decreased. The secondary hardening performance of A-100 steel was changed after the deformation at low temperature. The tensile strength peak temperature was changed to 468 ℃, the tensile strength was decreased slowly when over aging. A-100 steel was cyclic hardened,and its fatigue crack growth properties were better than 300M steel. The high cycle fatigue property was heavily deteriorated when tested in 3.5%NaCl solution. |
来源
|
航空材料学报
,2017,37(6):16-24 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2017.001006
|
关键词
|
A-100钢
;
开坯锻造
;
二次硬化
;
疲劳性能
|
地址
|
中国航发北京航空材料研究院, 北京, 100095
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:6120742
|
参考文献 共
17
共1页
|
1.
赵振业.
合金钢设计,1999
|
CSCD被引
40
次
|
|
|
|
2.
Hemphill R M.
High strength,high fracture toughness alloy: US5268044,1993
|
CSCD被引
1
次
|
|
|
|
3.
Lee H M. Composition of M2C phase in tempering of high Co-Ni steels.
Scripta Metall Mater,1991,25:685-688
|
CSCD被引
6
次
|
|
|
|
4.
Ayer R. Transmission electron microscopy electron microscopy examination of hardening and toughening phenomena in Aer Met100.
Metallurgical and Materials Transactions A,1993,24:1943-1955
|
CSCD被引
46
次
|
|
|
|
5.
李志. AerMet100钢的研究与发展.
航空材料学报,2006,26(3):265-270
|
CSCD被引
29
次
|
|
|
|
6.
褚武扬.
断裂与环境断裂,2000
|
CSCD被引
46
次
|
|
|
|
7.
Olson G B. Science of steel.
34th Sagamore Army Materials Research Conference,1990:3-66
|
CSCD被引
1
次
|
|
|
|
8.
Lippard H E.
Microanalytical investigations of transformation toughened Co-Ni steels,1999
|
CSCD被引
1
次
|
|
|
|
9.
Lee H M. Composition of M2C phase in tempering of high Co-Ni steels.
Scripta Metallurgica et Materialia,1991,25(3):685-688
|
CSCD被引
6
次
|
|
|
|
10.
Grujicic M. Implication of elastic coherency in secondary hardening of high Co-Ni martensitic steels.
Journal of Materials Science,1991,26(5):1357-1362
|
CSCD被引
3
次
|
|
|
|
11.
Knepfler C A. High temperature stability and thermal expansion behavior of molybdenum-chromium M2C carbides.
Journal of Alloys and Compounds,1997,248:139-142
|
CSCD被引
1
次
|
|
|
|
12.
李杰. 二次硬化超高强度钢中析出强化相HRTEM研究.
航空材料学报,2008,28(4):1-5
|
CSCD被引
10
次
|
|
|
|
13.
李杰. AerMet100钢力学性能的回火温度敏感性研究.
金属热处理,2010,35(3):33-36
|
CSCD被引
7
次
|
|
|
|
14.
Kuehmann C J. Computational materials design and engineering.
Materials Science and Technology,2009,25(4):472-478
|
CSCD被引
8
次
|
|
|
|
15.
Grabowski J.
Ferrium M54: a new fatigue-resistant, lower cost,ultra-high strength steel for landing gear and arrestment applications,2014
|
CSCD被引
1
次
|
|
|
|
16.
吴胜川.
材料与结构的疲劳,2016
|
CSCD被引
1
次
|
|
|
|
17.
Saha A.
System design of transformation toughened blast-resistant Naval hull steels,2004
|
CSCD被引
1
次
|
|
|
|
|