高光谱遥感影像异常目标检测研究进展
Research progress on hyperspectral anomaly detection
查看参考文献57篇
文摘
|
随着航空航天技术与遥感技术的不断发展,遥感影像在诸多领域的应用不断拓展,其中高光谱分辨率遥感影像具有"图谱合一"的特点,即该数据既包含了具有强大区分性的地物光谱信息,又包含了丰富的地物空间位置信息,因此高光谱数据具有非常大的应用潜力。高光谱异常目标检测问题,是在对目标先验信息未知的前提下,根据光谱与空间信息实现对区域中的异常目标的进行"盲"检测,因此其在资源调查、灾害救援等领域发挥了巨大的作用,是遥感领域非常重要的研究课题。本文针对高光谱遥感影像异常目标检测研究方向,首先总结阐述了目前高光谱异常目标检测问题的主要研究进展,根据算法原理的不同对现有主流算法进行了分类与总结,主要分成了基于统计学、基于数据表达、基于数据分解、基于深度学习等不同的种类的方法,并对每类方法的特点进行分析。随后通过对现有方法的调研、分析与总结,提出了数据库拓展、多源数据融合、算法实用化等高光谱异常检测研究未来发展的3个方向。 |
其他语种文摘
|
The applications of remote sensing images in numerous fields have been increasing with the continuous development of aerospace and remote sensing technologies. HyperSpectral Image(HSI) is a common type of remote sensing image that comprises a series of two-dimensional remote sensing images as a 3D data cube. Each two-dimensional image in HSI can reveal the reflection/radiation intensity of different wavelengths of electromagnetic waves, and each pixel of HSI corresponds to the spectral curve reflecting the spectral information in different wavelengths. Therefore, the hyperspectral remote sensing images are characterized by" spatial-spectral integration," which contains not only spectral information with strong discriminant but also rich spatial information. Therefore, the hyperspectral data have considerable application potential. Hyperspectral anomaly detection aims to detect pixels in a scene with different characteristics from surrounding pixels and determines them as anomalous targets without any previous knowledge of the target. Hyperspectral anomaly detection is an unsupervised process that does not require any priori information regarding the target to be measured in advance; thus, this type of detection plays a crucial role in real life. For example, anomaly target detection technology can be used to search and rescue people after a disaster, quickly determine the fire point of a forest fire, and search mineral points in mineral resource exploration. Hyperspectral anomaly detection has been a popular research direction in the area of remote sensing image processing in recent years, and a numerous researchers have conducted extensive research and achieved rich research results. However, hyperspectral anomaly detection still encounters many difficult problems. For example, the targets of the same material may exhibit various spectral characteristics due to the different imaging equipment and environment, which may interfere with the detection results and lead to the problem of" same object with different spectra." Meanwhile, the targets of different materials may also exhibit the problem of" different objects with different spectra." Then, most of the existing hyperspectral anomaly detection algorithms are only in the laboratory stage and with low technology maturity. Furthermore, the hyperspectral data may have numerous spectral bands that contain a considerable amount of redundant information, which increases the difficulty of data processing. Moreover, the number of publicly available hyperspectral anomaly detection datasets is insufficient and mostly old. In this paper, the main research progress of hyperspectral anomaly detection is first summarized. The existing mainstream algorithms are then classified and summarized. These algorithms are mainly divided into five categories: statistics-based anomaly detection methods, data expression-based anomaly detection methods, data decomposition-based anomaly detection methods, deep learning-based anomaly detection methods, and other methods. Through the investigation, analysis, and summary of the existing methods, three future development directions of hyperspectral anomaly detection are proposed.(1) Database expansion: new datasets with additional images and highly sophisticated remote sensing sensors are introduced.(2) Multisource data combination: the advantages of different imaging sensors and various types of remote sensing data are maximized.(3) Algorithm practicality: the anomaly detection algorithms are relayed for application on real platforms. |
来源
|
遥感学报
,2024,28(1):42-54 【核心库】
|
DOI
|
10.11834/jrs.20232405
|
关键词
|
遥感
;
高光谱遥感
;
高光谱异常检测
;
深度学习
;
矩阵分解
|
地址
|
1.
中国科学院西安光学精密机械研究所, 中国科学院光谱成像技术重点实验室, 西安, 710119
2.
西安交通大学,信息与通信工程学院, 西安, 710049
3.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-4619 |
学科
|
测绘学;自动化技术、计算机技术 |
基金
|
陕西省重点研发计划
|
文献收藏号
|
CSCD:7664715
|
参考文献 共
57
共3页
|
1.
Candes E J. Robust principal component analysis?.
Journal of the ACM,2011,58(3):11
|
CSCD被引
257
次
|
|
|
|
2.
Chen Y. Sparse representation for target detection in hyperspectral imagery.
IEEE Journal of Selected Topics in Signal Processing,2011,5(3):629-640
|
CSCD被引
43
次
|
|
|
|
3.
Cheng T K. Graph and total variation regularized low-rank representation for hyperspectral anomaly detection.
IEEE Transactions on Geoscience and Remote Sensing,2020,58(1):391-406
|
CSCD被引
7
次
|
|
|
|
4.
Feng S. A hyperspectral anomaly detection method based on low-rank and sparse decomposition with density peak guided collaborative representation.
IEEE Transactions on Geoscience and Remote Sensing,2022,60:5501513
|
CSCD被引
1
次
|
|
|
|
5.
Fu X Y. Hyperspectral anomaly detection via deep plug-and-play denoising CNN regularization.
IEEE Transactions on Geoscience and Remote Sensing,2021,59(11):9553-9568
|
CSCD被引
1
次
|
|
|
|
6.
Geng X R. A high-order statistical tensor based algorithm for anomaly detection in hyperspectral imagery.
Scientific Reports,2014,4(1):6869
|
CSCD被引
3
次
|
|
|
|
7.
Guo Q D. Weighted-RXD and linear filter-based RXD: improving background statistics estimation for anomaly detection in hyperspectral imagery.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2351-2366
|
CSCD被引
15
次
|
|
|
|
8.
Herweg J A. SpecTIR hyperspectral airborne Rochester experiment data collection campaign.
Proceedings Volume 8390, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII,2012:717-726
|
CSCD被引
1
次
|
|
|
|
9.
Hu J. Spatial-spectral extraction for hyperspectral anomaly detection.
IEEE Geoscience and Remote Sensing Letters,2022,19:6004605
|
CSCD被引
1
次
|
|
|
|
10.
Jiang K. Semisupervised spectral learning with generative adversarial network for hyperspectral anomaly detection.
IEEE Transactions on Geoscience and Remote Sensing,2020,58(7):5224-5236
|
CSCD被引
9
次
|
|
|
|
11.
Jiang T. Discriminative reconstruction constrained generative adversarial network for hyperspectral anomaly detection.
IEEE Transactions on Geoscience and Remote Sensing,2020,58(7):4666-4679
|
CSCD被引
11
次
|
|
|
|
12.
Jiang T. Discriminative semisupervised generative adversarial network for hyperspectral anomaly detection.
2020 IEEE International Geoscience and Remote Sensing Symposium,2020:2420-2423
|
CSCD被引
1
次
|
|
|
|
13.
Kang X D. Hyperspectral anomaly detection with attribute and edgepreserving filters.
IEEE Transactions on Geoscience and Remote Sensing,2017,55(10):5600-5611
|
CSCD被引
28
次
|
|
|
|
14.
Kwon H. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery.
IEEE transactions on Geoscience and Remote Sensing,2005,43(2):388-397
|
CSCD被引
91
次
|
|
|
|
15.
Li J Y. Hyperspectral anomaly detection by the use of background joint sparse representation.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(6):2523-2533
|
CSCD被引
20
次
|
|
|
|
16.
Li K. Spectral-spatial deep support vector data description for hyperspectral anomaly detection.
IEEE Transactions on Geoscience and Remote Sensing,2022,60:5522316
|
CSCD被引
1
次
|
|
|
|
17.
Li L. Low-rank and sparse decomposition with mixture of Gaussian for hyperspectral anomaly detection.
IEEE Transactions on Cybernetics,2021,51(9):4363-4372
|
CSCD被引
12
次
|
|
|
|
18.
Li W. Collaborative representation for hyperspectral anomaly detection.
IEEE Transactions on Geoscience and Remote Sensing,2015,53(3):1463-1474
|
CSCD被引
57
次
|
|
|
|
19.
Li W. Transferred deep learning for anomaly detection in hyperspectral imagery.
IEEE Geoscience and Remote Sensing Letters,2017,14(5):597-601
|
CSCD被引
15
次
|
|
|
|
20.
Li Y S. Sparse codinginspired GAN for hyperspectral anomaly detection in weakly supervised learning.
IEEE Transactions on Geoscience and Remote Sensing,2022,60:5512811
|
CSCD被引
1
次
|
|
|
|
|