轮轨试样表面粗糙度取向对油润滑下摩擦系数的影响
INFLUENCE OF SURFACE ROUGHNESS ORIENTATIONS ON FRICTION COEFFICIENT OF WHEEL/RAIL SPECIMEN IN OIL LUBRICATION
查看参考文献30篇
文摘
|
黏着力是列车安全与平稳运行的关键因素之一.最大黏着力与摩擦力有关,摩擦力的减小会导致黏着力的降低.表面粗糙度及其取向是影响摩擦系数的重要因素,然而,有关表面粗糙度取向对于混合润滑状态下摩擦系数的影响的研究结论似乎是矛盾的.用激光离散改性技术将车轮试样表面制备成具有菱形、纵纹、横纹3种典型的形貌,并且与不作激光离散改性处理的车轮试样作对比,用基于确定性模型的统一雷诺方程数值分析法和小比例尺度的轮轨试样摩擦学实验,得到的结论是:在油润滑状态下,激光表面形貌大幅提高摩擦系数,其中菱形对应的摩擦系数最大,纵纹与横纹的摩擦系数相差不大,摩擦系数的大小主要取决于由表面粗糙度取向决定的接触区内粗糙峰接触压力与总压力之比,侧流效应也是影响摩擦系数的重要因素,它主要取决于接触区内表面粗糙度的取向. |
其他语种文摘
|
Adhesion is one of the key factors to maintain safety and stability of train running. Maximum adhesion is related to the friction. The decline of friction results in decrease of adhesion. In fact the friction coefficient on mixed lubrication is not only greatly influenced by surface roughness, but also by roughness orientations. However, the previous investigations regarding the effect of roughness orientation on friction coefficient seem to be contradictory. In this paper, the three typical surface roughness orientations, i.e., longitudinal, transverse and rhombus were treated by laser discrete modification technology. The behavior of three patterns of roughness orientations under mixed lubrication were compared to those of without laser treatment. A numerical analysis based on deterministic model with unified Reynolds equation was adopted. Tribology tests with scaled wheel/rail specimens were carried out. It is concluded that the wheel surface with laser patterns greatly enhanced the friction coefficient comparing with the surface without laser pattern. The friction coefficient of rhombus pattern is the greatest one among that of the three laser patterns. The friction coefficient of longitudinal and transverse pattern is almost the same, but the former is a little higher than that of the latter. The friction coefficient is mainly depended on the ratio of asperity contact pressure to the total pressure in mixed lubrication. The orientation effect on friction coefficient is also determined by lateral flow which is highly depended on the geometry of contact region. |
来源
|
力学学报
,2016,48(5):1114-1125 【核心库】
|
DOI
|
10.6052/0459-1879-16-080
|
关键词
|
弹流润滑
;
表面形貌
;
滚动接触
;
轮/轨
|
地址
|
1.
中国科学院力学研究所, 北京, 100190
2.
北京理工大学机械与车辆工程学院, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
机械、仪表工业 |
基金
|
国家自然科学基金
;
国家973计划
|
文献收藏号
|
CSCD:5808805
|
参考文献 共
30
共2页
|
1.
Ohyama T. Traction and slip at higher rolling speeds: Some experiments under dry friction water lubrication.
Contact Mechanics and Wear of Rail/Wheel Systems, Proceedings of the International Symposium Held at the University of British Columbia,1983:395-418
|
CSCD被引
1
次
|
|
|
|
2.
Ohyama T. Tribological studies on adhesion phenomena between wheel and rail at high speed.
Wear,1991,144:263-275
|
CSCD被引
18
次
|
|
|
|
3.
杨国伟. 高速列车的关键力学问题.
力学进展,2015,45:201507
|
CSCD被引
12
次
|
|
|
|
4.
Zhu Y. Adhesion modeling in the wheel-rail contact under dry and lubricated conditions using measured 3D surfaces.
Tribol Inter,2013,61:1-10
|
CSCD被引
7
次
|
|
|
|
5.
Chen H. Adhesion between rail/wheel under water lubricated contact.
Wear,2002,253:75-81
|
CSCD被引
25
次
|
|
|
|
6.
Patir N. Average flow model for determining effects of 3-dimensional roughness on partial hydrodynamic lubrication.
J Lubri Technol Trans ASME,1978,100(1):12-17
|
CSCD被引
227
次
|
|
|
|
7.
Patir N. Application of average flow model to lubrication between rough sliding Surfaces.
J Lubri Technol Trans ASME,1979,101(2):220-230
|
CSCD被引
147
次
|
|
|
|
8.
Chen H. Analysis of adhesion under wet conditions for three-dimensional contact considering surface roughness.
Wear,2005,258:1209-1216
|
CSCD被引
26
次
|
|
|
|
9.
Chen H. Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions.
Wear,2008,265(9/10):1504-1511
|
CSCD被引
25
次
|
|
|
|
10.
Akbarzadeh S. Effect of surface pattern on Stribeck curve.
Tribol Lett,2010,37(2):477-486
|
CSCD被引
5
次
|
|
|
|
11.
Akbarzadeh S. On the prediction of running in behavior in mixed-lubrication line contact.
J Tribol Trans ASME,2010,132(3):032102
|
CSCD被引
5
次
|
|
|
|
12.
Moes H. Optimum similarity analysis with applications to elastohydrodynamic lubrication.
Wear,1992,59(1):57-66
|
CSCD被引
15
次
|
|
|
|
13.
Jereys H. The draining of a vertical plate.
Math Proc Cambri Philo Soci,1930,26:204-205
|
CSCD被引
1
次
|
|
|
|
14.
Steen W M.
Laser Material Processing. 4th ed,2010
|
CSCD被引
3
次
|
|
|
|
15.
Iino Y. Effect of overlap pass tempering on hardness and fatigue behaviour in laser heat-treatment of carbon-steel.
J Mater Sci Lett,1987,6(10):1193-1194
|
CSCD被引
2
次
|
|
|
|
16.
Li Z Y. Investigation on rolling sliding wear behaviour of wheel steel by laser dispersed treatment.
Wear,2014,314(1/2):236-240
|
CSCD被引
8
次
|
|
|
|
17.
Hu Y Z. A full numerical solution to the mixed lubrication in point contacts.
J Tribol Trans ASME,2000,122(1):1-9
|
CSCD被引
78
次
|
|
|
|
18.
Zhu D. Effect of surface roughness on mixed EHD lubrication characteristics.
Tribol Trans,2003,46(1):44-48
|
CSCD被引
5
次
|
|
|
|
19.
Zhu D. Effects of rough surface topography and orientation on the characteristics of EHD and mixed lubrication in both circular and elliptical contacts.
Tribol Trans,2001,44:391-398
|
CSCD被引
7
次
|
|
|
|
20.
Ren N. Micro textures in concentratedconformal-contact lubrication: Effect of distribution patterns.
Tribol Lett,2007,28(3):275-285
|
CSCD被引
14
次
|
|
|
|
|