帮助 关于我们

返回检索结果

利用独立成分分析技术和静息fMRI数据对脑功能区进行定位
Identification of functional brain regions with resting-state fMRI data: an independent component analysis approach

查看参考文献14篇

董国珍 1   杨志 1   王培培 2   李静薇 1   肖壮伟 3   胡小平 4   翁旭初 1  
文摘 目的验证可否利用独立成分分析(ICA)技术和静息fMRI数据对脑功能区进行定位。方法利用ICA方法,通过研究静息状态的脑功能联结来获取功能区的定位。静息数据的采集采用短TR,在低通滤波(截止频率0.08Hz)后可以去除生理噪声的主要影响。在数据分析中,对ICA结果进行了可复制性分析,只保留可复制性较高的成分,之后将ICA结果与传统的“种子像素”方法获得的结果进行定量的一致性分析。结果ICA能够在不设定“种子像素”的情况下从静息fMRI数据中分解出运动系统和初级视觉系统的功能联结图,并在所有被试上都与“种子像素”方法有较高一致性。ICA在同一数据中可以同时分解出上述两个系统的功能联结图。结论ICA克服了“种子像素”方法的主观性,稳定、准确地从静息fMRI数据中分解出了脑功能联结图。本研究支持初级功能系统内的联系要明显强于系统间的联系的假设,显示ICA方法具有良好的临床应用潜力。
其他语种文摘 Objective To examine the feasibility of functional localization in the human brain with resting-state (task-free) fMRI data using independent component analysis (ICA). Methods ICA was used to study the functional connectivity in resting-state in order to locate the functional regions. The resting-state fMRI data were collected using short TR, and the major impact of various physiological noises was eliminated after the data were low-pass filtered (cutoff frequency = 0.08 Hz). ICA components were verified through reproducibility analysis, and only highly reproducible components were retained in the analysis of data. The results of ICA and the "seed voxel" method were then quantitatively compared for consistency. Results ICA was able to separate the functional connectivity maps for motor and primary visual systems without selecting the "seed voxel". The results of ICA had high consistency with those of traditional "seed voxel" method. Furthermore, ICA simultaneously obtained the functional connectivity maps for the two systems within one dataset. Conclusion ICA overcame the subjectiveness in the "seed voxel" method, and was capable to obtain functional connectivity from restingstate fMRI data. This study supports the hypothesis that there is stronger functional connectivity within primary systems than between them. Moreover, the current study has demonstrated potential capability of ICA in clinical applications.
来源 中国医学影像技术 ,2008,24(11):1829-1832 【核心库】
关键词 独立成分分析 ; 静息 ; 磁共振成像
地址

1. 中国科学院心理研究所脑高级功能实验室, 北京, 100101  

2. 首都医科大学基础医学院, 北京, 100069  

3. 汕头大学医学院, 广东, 汕头, 515031  

4. Emory大学生物医学影像技术中心, 美国

语种 中文
文献类型 研究性论文
ISSN 1003-3289
学科 临床医学
基金 国家自然科学基金
文献收藏号 CSCD:3449490

参考文献 共 14 共1页

1.  Ma L. Clinical application of functional magnetic resonance imaging in China. Chinese Medical Journal,2006,119(15):1235-1236 CSCD被引 1    
2.  Cui S. Both sides of human cerebellum involved in preparation and execution of sequential movements. Neuroreport,2000,11(17):3849-3853 CSCD被引 1    
3.  Lin CY. Similar brain activation patterns for writing logographic and phonetic symbols in Chinese. Neuroreport,2007,18(15):1615-1621 CSCD被引 1    
4.  Rykhlevskaia E. Combining structural and functional neuroimaging data for studying brain connectivity:a review. Psychophysiology,2008,45(2):173-187 CSCD被引 3    
5.  Yang Z. Ranking and averaging independent component analysis by reproducibility. Hum Brain Mapp,2008,29(6):711-725 CSCD被引 5    
6.  Bressler S. Large-scale cortical networks and cognition. Brain Res Rev,1995,20(3):288-304 CSCD被引 1    
7.  Van de Ven V. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp,2004,22(3):165-178 CSCD被引 1    
8.  Biswal B. Reduction of physiological fluctuations in fMRI using digital filters. Magn Reson Med,1996,35(1):107-113 CSCD被引 1    
9.  张伟伟. 利用独立成分分析实现成组的fMRI信号的盲分离. 中国医学影像技术,2005,21(3):333-335 CSCD被引 2    
10.  Beckmann CF. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging,2004,23(2):137-152 CSCD被引 16    
11.  Schulder M. Functional MRI-guided surgery of intracranial tumors. Stereotact Funct Neurosurg,1997,68(-4 Pt 1):98-105 CSCD被引 3    
12.  McKeown MJ. Independent component analysis of fMRI data:examining the assumptions. Hum Brain Mapp,1998,6(5/6):368-372 CSCD被引 14    
13.  Calhoun VD. Independent components analysis applied to fMRI data:a natural model and order selection. NSIP Baltimore MD,2001,48(1):180-192 CSCD被引 1    
14.  Schmithorst VJ. A data-driven method for analysis of associated time courses found from group independent component analysis.ISMRM Seattle,2006:6-12 CSCD被引 1    
引证文献 3

1 秦玲娣 难治性抑郁症患者静息状态默认网络的改变 中国医学影像技术,2009,25(12):2182-2185
CSCD被引 3

2 邱海棠 重性抑郁症的静息态功能磁共振成像低频振幅研究 生物医学工程学杂志,2014,31(1):97-102
CSCD被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号