3万年来亚洲降水与大气环流变化重建和模拟综述
Reconstruction and simulations for precipitation and atmospheric circulation over the past 30000 years in Asia
查看参考文献52篇
文摘
|
区域性的湖泊水位能反映有效降水及气候变化,已成为重建第四纪降水和水量平衡最重要的指标。亚洲分布着几乎全球各种成因类型的湖泊,第四纪湖泊演化在全球第四纪研究中占有重要地位。多年来通过对地貌学、沉积学、生物地球化学和考古学的研究重建了各个区域的湖泊水位变化,并据此建立了湖泊演变数据库,作为研究第四纪亚洲区域气候变化的重要基础。本文介绍湖泊水位气候理论的发展历程,回顾晚第四纪亚洲湖泊水位研究的历史;分析晚第四纪亚洲从西到东不同区域湖泊水位变化历史和地域特征,并根据晚第四纪冰期和间冰期的两个特征期湖泊空间变化特征,从古气候模拟的角度探讨了气候驱动机制下湖泊水位变化的成因。 |
其他语种文摘
|
Lake-level changes respond to variations in regional water balance and are sensitive to climate changes. Thus it has been one of the most important indicators applied to reconstruct precipitation and water budget. Tracing long- term lake- level changes can provide references to scientific prediction of catchment floods and droughts, rational utilization of lake water resources, and protection of lake ecological environments in Asia. As there was no observed data from pre-industrial time, almost all long-term precipitation and water budget reconstructions rely on geomorphologic, sedimentologic, biogeologic and archaeological records and so on. In addition, the construction of systematic lake level databases has facilitated regional climate change research of Asia for the late Quaternary. This paper summarizes and analyzes lake- level changes in Asia over the past 30,000 years and is composed of 4 sections. Section 1 introduces the history of Asian lake level studies, construction of indicator system and lake status database, and deep-lake drilling in Asia. Section 2 analyzes time sequences of four subregions of Asia (Middle East, Central Asia, Tibetan Plateau, and East Asia) lake-level changes and infers climate conditions from the time sequences. Section 3 focuses on the spatial patterns and climate mechanisms of two key climate periods (mid-Holocene, LGM). General circulation models (GCM) and regional climate models(RegCM2) were used to reveal spatial distribution patterns of mean annual temperature, precipitation and water budget (P-E). (1) 6-ka BP (mid-Holocene): the increase in the Northern Hemisphere summer insolation led to a temperature increase in the mid- and high latitudes in Asia. Significantly enhanced Asian monsoon induced the increase of precipitation in Arabian, Indian, and Tibetan plateaus. The reduction in precipitation over southern China was linked with adjustments in the position and strength of the Pacific Subtropical High. Annual convergences over Mongolia, north-northeast China, Tibet, and India indicated more moisture and frequently wet conditions. Conversely, divergences over southern China contributed to dry conditions. (2) 21-ka BP: Annual temperatures were generally lower than today. Less precipitation over most areas of Asia and negative P-E anomalies in the Southeast Asian tropical area and East Asian lowlands were due to a weakened Asian summer monsoon and a persistent winter Mongolian High. A southward and eastward shift in the position of the Westerlies plus a decrease in evaporation in the cool conditions that prevailed across Asia led to increases in annual precipitation and P-E in west China. Section 4 provides a brief account of the importance of Asia lake-level research to the understanding of environmental changes in the future and the uncertainties about the past lake-level changes. |
来源
|
地理科学进展
,2014,33(6):807-814 【核心库】
|
关键词
|
亚洲
;
湖泊水位
;
晚第四纪
;
古湖沼学
;
古气候模型
;
古气候重建
|
地址
|
中国科学院南京地理与湖泊研究所, 湖泊与环境国家重点实验室, 南京, 210008
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
学科
|
自然研究、自然历史 |
基金
|
科技部全球变化重大科学研究计划项目
|
文献收藏号
|
CSCD:5185142
|
参考文献 共
52
共3页
|
1.
侯光良. 青藏高原全新世降水序列的集成重建.
地理科学进展,2012,31(9):1117-1123
|
CSCD被引
11
次
|
|
|
|
2.
胡东生.
察尔汗盐湖研究,2001:296-322
|
CSCD被引
1
次
|
|
|
|
3.
南京地理与湖泊研究所(NIGL).
云南断陷湖泊环境与沉积,1989
|
CSCD被引
1
次
|
|
|
|
4.
潘安定.
柴达木盆地尕海湖晚第四纪古环境,2010:126-141
|
CSCD被引
1
次
|
|
|
|
5.
裴文中. 萨拉乌苏河系的初步探讨.
古脊椎动物与古人类,1964,8(2):99-18
|
CSCD被引
35
次
|
|
|
|
6.
申洪源. 末次冰期间冰阶(40~22 kaBP)内蒙古黄旗海古降水量研究.
沉积学报,2005,23(3):523-530
|
CSCD被引
8
次
|
|
|
|
7.
沈吉.
湖泊沉积与环境演化,2010:448-473
|
CSCD被引
1
次
|
|
|
|
8.
王苏民.
呼伦湖,1995
|
CSCD被引
1
次
|
|
|
|
9.
于革.
中国湖泊演变与古气侯动力学研究,2001
|
CSCD被引
1
次
|
|
|
|
10.
郑绵平.
青藏高原的盐湖,1989
|
CSCD被引
2
次
|
|
|
|
11.
An Z S. Glacial-Interglacial Indian summer monsoon dynamics.
Science,2011,333(719):719-723
|
CSCD被引
87
次
|
|
|
|
12.
. Baikal Drilling Project BDP- 96 (Leg II) Members. A continuous record of climate changes for the last five million years from the bottom sediment of Lake Baikal.
Russian Geology and Geophysic,1997,39:135-154
|
CSCD被引
1
次
|
|
|
|
13.
Chen K Z. Late Pleistocene evolution of salt lakes in the Qaidam Basin, Qinghai Province, China.
Palaeogeography, Palaeoclimatology, Palaeoecology,1986,54(1):87-104
|
CSCD被引
55
次
|
|
|
|
14.
COHMAP Members. Climatic changes of the last 18,000 years: observations and model simulations.
Science,1988,241:1043-1052
|
CSCD被引
65
次
|
|
|
|
15.
Dearing J A. Lake sediments and palaeohydrological studies.
Handbook of Holocene palaeoecology and palaeohydrology,1986:67-90
|
CSCD被引
3
次
|
|
|
|
16.
Digerfeldt G. Studies on past lake- level fluctuations.
Handbook of Holocene palaeoecology and palaeohydrology,1986:127-144
|
CSCD被引
5
次
|
|
|
|
17.
Fang J Q. Lake evolution during the past 30, 000 years in China, and its implications for environmental changes.
Quaternary Research,1991,36:37-60
|
CSCD被引
12
次
|
|
|
|
18.
Farrera I. Tropical climates at the last glacial maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake- levels and geochemistry.
Climate Dynamics,1999,15:823-856
|
CSCD被引
16
次
|
|
|
|
19.
Harrison S P. European lakes as palaeohydrological and palaeoclimatic indicators.
Quaternary Science Review,1993,12:233-248
|
CSCD被引
17
次
|
|
|
|
20.
Harrison S P. Holocene changes in lake levels as climate proxy data in Europe.
Palaoklimaforchung,1991,6:159-179
|
CSCD被引
1
次
|
|
|
|
|