选区激光熔化成形24CrNiMo合金钢的组织结构与力学性能
Microstructure and Mechanical Properties of 24CrNiMo Alloy Steel Formed by Selective Laser Melting
查看参考文献34篇
文摘
|
采用选区激光熔化(SLM)技术制备了24CrNiMo合金钢件,研究了SLM工艺参数对成形合金钢件显微组织、致密度、硬度及拉伸性能的影响。结果表明:成形合金钢的显微组织由回火马氏体和少量残余奥氏体组成;随着激光功率增大和扫描速度降低,熔池体积增大,冷却速度降低,回火马氏体板条粗化,热影响区变宽,合金钢的硬度降低;同时,成形合金钢内未熔合孔洞减少,致密度增加;当激光功率为320W、扫描速度为750 mm/s时,合金钢的致密度最高,为99.93%;当激光功率为320W、扫描速度为950 mm/s时,成形合金钢的拉伸性能最佳,其抗拉强度和屈服强度分别为1362MPa和1252MPa,延伸率为16.2%。在合适的激光成形参数下,SLM成形24CrNiMo合金钢的综合力学性能明显优于铸态合金钢。 |
其他语种文摘
|
The selective laser melting(SLM)technology is used to obtain the 24CrNiMo alloy steel for studying the influence of the laser scanning process parameters on its microstructure,relative density,hardness,and tensile properties.The results demonstrate that the microstructure of the SLM-formed alloy steel comprises tempered martensite and a small amount of retained austenite.The molten pool volume increases,whereas the cooling rate decreases with increasing laser power and decreasing laser scanning speed,resulting in the coarsening of the tempered martensite lath and the widening of the heat affected zone;further,the microhardness of the steel is observed to decrease.Meanwhile,the pores induced by the non-melted particle decrease,improving the relative density.The highest relative density of 99.93%can be obtained when the laser power and scanning speed are 320W and 750 mm/s,respectively.When the laser power is 320Wand scanning speed is 950 mm/s,the SLM-formed alloy steel exhibits optimal tensile properties,its tensile strength and yield strength are 1362MPa and 1252MPa,respectively,and its elongation is 16.2%.Under reasonable SLM parameters,the comprehensive mechanical properties of the 24CrNiMo alloy steel formed via SLM are significantly better than those of the as-cast steel. |
来源
|
中国激光
,2020,47(5):0502008 【核心库】
|
DOI
|
10.3788/CJL202047.0502008
|
关键词
|
激光技术
;
选区激光熔化
;
合金钢
;
显微组织
;
致密度
;
力学性能
|
地址
|
1.
中国科学技术大学材料科学与工程学院, 安徽, 合肥, 230026
2.
中国科学院金属研究所, 中国科学院金属腐蚀与防护实验室, 辽宁, 沈阳, 110016
3.
南昌航空大学材料科学与工程学院, 江西, 南昌, 330063
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7025 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:6734824
|
参考文献 共
34
共2页
|
1.
Wang Y M. Additively manufactured hierarchical stainless steels with high strength and ductility.
Nature Materials,2018,17(1):63-71
|
CSCD被引
144
次
|
|
|
|
2.
Murr L E. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies.
Journal of Materials Science &Technology,2012,28(1):1-14
|
CSCD被引
88
次
|
|
|
|
3.
Herzog D. Additive manufacturing of metals.
Acta Materialia,2016,117:371-392
|
CSCD被引
249
次
|
|
|
|
4.
Gu D D. Densification behavior,microstructure evolution,and wear performance of selective laser melting processed commercially pure titanium.
Acta Materialia,2012,60(9):3849-3860
|
CSCD被引
118
次
|
|
|
|
5.
Kruth J P. Consolidation phenomena in laser and powder-bed based layered manufacturing.
CIRP Annals,2007,56(2):730-759
|
CSCD被引
70
次
|
|
|
|
6.
Sing S L. Selective laser melting of titanium alloy with 50wt% tantalum: effect of laser process parameters on part quality.
International Journal of Refractory Metals and Hard Materials,2018,77:120-127
|
CSCD被引
13
次
|
|
|
|
7.
王华明. 大型钛合金结构件激光直接制造的进展与挑战(邀请论文).
中国激光,2009,36(12):3204-3209
|
CSCD被引
127
次
|
|
|
|
8.
Louvis E. Selective laser melting of aluminium components.
Journal of Materials Processing Technology,2011,211(2):275-284
|
CSCD被引
70
次
|
|
|
|
9.
Jia Q B. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties.
Journal of Alloys and Compounds,2014,585:713-721
|
CSCD被引
59
次
|
|
|
|
10.
Montero-Sistiaga M L. Microstructure evolution of 316Lproduced by HP-SLM (high power selective laser melting).
Additive Manufacturing,2018,23:402-410
|
CSCD被引
21
次
|
|
|
|
11.
Nguyen Q B. High mechanical strengths and ductility of stainless steel 304L fabricated using selective laser melting.
Journal of Materials Science & Technology,2019,35(2):388-394
|
CSCD被引
15
次
|
|
|
|
12.
杨永强. 不锈钢薄壁零件选区激光熔化制造及影响因素研究.
中国激光,2011,38(1):0103001
|
CSCD被引
12
次
|
|
|
|
13.
Gong H J. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting.
Materials & Design,2015,86:545-554
|
CSCD被引
54
次
|
|
|
|
14.
Moussaoui K. Effects of selective laser melting additive manufacturing parameters of Inconel 718on porosity, microstructure and mechanical properties.
Materials Science and Engineering:A,2018,735:182-190
|
CSCD被引
23
次
|
|
|
|
15.
Guan K. Effects of processing parameters on tensile properties of selective laser melted 304stainless steel.
Materials &Design,2013,50:581-586
|
CSCD被引
38
次
|
|
|
|
16.
Hollander D A. Structural,mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming.
Biomaterials,2006,27(7):955-963
|
CSCD被引
40
次
|
|
|
|
17.
Mertens R. Influence of powder bed preheating on microstructure and mechanical properties of H13tool steel SLM parts.
Physics Procedia,2016,83:882-890
|
CSCD被引
23
次
|
|
|
|
18.
Liu F G. Effect of microstructure on the fatigue crack growth behavior of laser solid formed 300Msteel.
Materials Science and Engineering:A,2017,695:258-264
|
CSCD被引
6
次
|
|
|
|
19.
Wei M W. Selective laser melting of 24CrNiMo steel for brake disc:fabrication efficiency,microstructure evolution,and properties.
Optics &Laser Technology,2018,107:99-109
|
CSCD被引
6
次
|
|
|
|
20.
袁梅彦. 24CrNiMo合金钢的激光选区熔化成形工艺研究.
工程与试验,2019,59(2):18-21
|
CSCD被引
3
次
|
|
|
|
|