基于社交媒体数据的城市人群分类与活动特征分析
Analysis of Classification Methods and Activity Characteristics of Urban Population based on Social Media Data
查看参考文献18篇
文摘
|
空间信息技术已开始进入全空间信息系统发展阶段,即将空间信息系统的范畴从传统测绘空间扩展到宇宙空间、室内空间、微观空间等可量测空间。位置大数据不仅是全空间信息系统的重要研究对象之一,而且也成为了广域全空间中了解人们生活方式以及城市动态变化的一种有效途径。本文基于社交媒体数据中的位置签到数据,提出一种不同于传统以社会经济属性为依据的城市人群分类方法。首先利用签到数据的时间序列构造矩阵模型;然后,通过分析用户签到活动的时间特征,采用K-means聚类算法和K近邻算法(K-NN)识别出具有不同时空行为特征的城市人群(静态居民、动态居民、通勤者以及访问者);最后,本文根据得到的人群分类结果,通过分析不同类型人群的时空间行为特征,发现不同类型人群时空间行为的差异性与潜在规律性,从而为表征城市人群的组成结构及特征,研究城市时空结构提供一种新的视角。 |
其他语种文摘
|
With the rapid development of spatial information technology, the concept of Pan-spatial Information System has been proposed. It extends the scope of spatial information system from the traditional mapping space to the space, interior space, microscopic space and other measurable space. Location data is one of the important research objects of Pan-spatial Information System and it has become a way of studying people's social life and urban dynamics. In this paper, we propose a new crowd classification method based on check-in data which is different from the traditional method based on socioeconomic attributes. Firstly, using the time series of check-in data, we build a matrix model. Then, we analyze the temporal characteristics of residents'check-in activities. The analytical process starts from spatial-temporal profiles, learns the different behaviors, and returns annotated profiles. In the analytical process, we use the K-means clustering algorithm and K-NN algorithm to learn how to annotate profiles with a city user category (resident, dynamic resident, commuter, or visitor). Finally, according to the classification results of the population, we analyze the temporal and spatial behavior of different city user category and find their differences and potential regularity of spatial behavior. Our method can be applied to a new research perspective for characterizing the composition and characteristics of the urban population and studying urban spatiotemporal structure. |
来源
|
地球信息科学学报
,2017,19(9):1238-1244 【核心库】
|
DOI
|
10.3724/SP.J.1047.2017.01238
|
关键词
|
位置签到数据
;
时间序列
;
时空间行为
;
城市人口分类
|
地址
|
电子科技大学资源与环境学院, 成都, 611731
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
测绘学 |
基金
|
国家重点研发计划资助项目
;
国家自然科学基金项目
;
中央高校基本科研业务费专项资金资助
|
文献收藏号
|
CSCD:6081486
|
参考文献 共
18
共1页
|
1.
周成虎. 全空间地理信息系统展望.
地理科学进展,2015,34(2):129-131
|
CSCD被引
87
次
|
|
|
|
2.
华一新. 全空间信息系统的核心问题和关键技术.
测绘科学技术学报,2016,33(4):331-335
|
CSCD被引
50
次
|
|
|
|
3.
Scholz R W. Detection of dynamic activity patterns at a collective level from large-volume trajectory data.
International Journal of Geographical Information Science,2014,28(5):946-963
|
CSCD被引
8
次
|
|
|
|
4.
Ferreira N. Visual exploration of big spatio-temporal urban data: A study of new york city taxi trips.
IEEE Transactions on Visualization and Computer Graphics,2013,19(12):2149-2158
|
CSCD被引
35
次
|
|
|
|
5.
Calabrese F. Real-time urban monitoring using cell phones: A case study in Rome.
IEEE Transactions on Intelligent Transportation Systems,2011,12(1):141-151
|
CSCD被引
24
次
|
|
|
|
6.
Eagle N. Inferring friendship network structure by using mobile phone data.
Proceedings of the National Academy of Sciences,2009,106(36):15274-15278
|
CSCD被引
65
次
|
|
|
|
7.
Gonzalez M C. Understanding individual human mobility patterns.
Nature,2008,453(7196):779-782
|
CSCD被引
210
次
|
|
|
|
8.
古杰. 国内外城市时空间结构研究的渊源及述评.
世界地理研究,2016,25(3):69-79
|
CSCD被引
1
次
|
|
|
|
9.
王波. 基于签到数据的城市活动时空间动态变化及区划研究.
地理科学,2015,35(2):151-160
|
CSCD被引
56
次
|
|
|
|
10.
Gabrielli L. City users' classification with mobile phone data.
Proceedings of the Big Data (Big Data), 2015 IEEE International Conference,2015
|
CSCD被引
1
次
|
|
|
|
11.
Furletti B. Use of mobile phone data to estimate mobility flows. Measuring urban population and inter-city mobility using big data in an integrated approach.
Proceedings of the 47th Meeting of the Italian Statistical Society, F,2014
|
CSCD被引
1
次
|
|
|
|
12.
兰宗敏. 城中村流动人口日常活动时空间结构——基于北京若干典型城中村的调查.
地理科学,2012,32(4):409-417
|
CSCD被引
15
次
|
|
|
|
13.
Liu Y. Uncovering patterns of interurban trip and spatial interaction from social media checkin data.
PLoS One,2014,9(1):e86026
|
CSCD被引
38
次
|
|
|
|
14.
Furletti B. Analysis of GSM calls data for understanding user mobility behavior.
Proceedings of the Big Data, 2013 IEEE International Conference on,2013
|
CSCD被引
1
次
|
|
|
|
15.
Fortunato S. Community detection in graphs.
Physics reports,2010,486(3):75-174
|
CSCD被引
306
次
|
|
|
|
16.
Monreale A. Privacy-by-design in big data analytics and social mining.
EPJ Data Science,2014,3(1):1
|
CSCD被引
1
次
|
|
|
|
17.
Cho E. Friendship and mobility: user movement in location-based social networks.
Proceedings of of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, F,2011
|
CSCD被引
1
次
|
|
|
|
18.
Blei D M. Latent dirichlet allocation.
Journal of machine learning research,2003,3(1):993-1022
|
CSCD被引
1337
次
|
|
|
|
|