射电天文30~300 MHz频段稀布阵列关键技术分析与研究
The Key Technology Analyses and Researches of the Sparse Array in VHF Band in Radio Astronomy
查看参考文献34篇
文摘
|
30~300 MHz的甚高频(Very High Frequency,VHF)频段是重要的射电天文波段,该频段观测采用天线阵组阵方式。稀布阵列具有空间分辨率高、副瓣电平低以及造价低等优点,进一步的天线阵综合加权可以对天线阵主瓣波束进行有效赋形,对最大旁瓣副瓣(Maximum Side Lobe)电平和远区栅瓣(Far Side Lobe)电平进行抑制。首先回顾了射电天文甚高频稀布阵列研究发展和现状,以及将会遇到的难点,提出了首先优化最优稀布天线阵元排布,进一步提出融合高性能计算平台+FPGA SOPC的稀布甚高频射电天文阵列信号处理结构体系,在图形处理器(Graphics Processing Unit,GPU)或者云计算平台上完成对天线阵各阵元频点加权参数的计算,然后通过高速总线将计算参数下发到前端的信号处理板中,通过FPGA SOPC完成对加权参数的配发。进一步分析计算了多波束情况下的数据率,可以实现实时的参数配置。本文成果为下一步大规模甚高频天线阵架设提供了技术依据。 |
其他语种文摘
|
VHF (Very High Frequency) band is one of important observation bands in Radio astronomy field.In this band,we usually use the array to form phased array telescope.In another hand,sparse array has more space resolution and lower side lobe level comparing with the regular array.Furthermore,based on array integrated optimization algorithms,we can effectively form the main beam and reject the Maximum side lobe levels and far side lobe levels.In this paper,at first,we review the development and research status of VHF sparse array in radio astronomy filed and analyze difficulties.The second,we promote a pipeline for sparse array building.The first step is constructing the optical elements configuration based on some optimization algorithms.And then,we promote a signal processing structure based on high performance computing severs and FPGA (Field Programmable Gate Array) SOPC (System On Programmable Chip) platform.In this platform,taking advantage of strong computing capability,in the GPU embedded in severs can compute the weighting parameters of different elements and different frequency channels.And then,transmitting these parameters through the high-speed bus and delivery them to each element in FPGA SOPC.We also analyze the data rate with multi-beams that can transmit the weighting parameters in real-time.This work can provide a technical base for future large-scale VHF array building. |
来源
|
天文研究与技术
,2023,20(5):421-437 【扩展库】
|
DOI
|
10.14005/j.cnki.issn1672-7673.20230630.001
|
关键词
|
甚高频
;
优化算法
;
稀布阵列
;
阵列综合
;
低副瓣
|
地址
|
1.
中国科学院云南天文台, 云南, 昆明, 650216
2.
云南省中马HF-VHF先进射电天文技术国际联合实验室, 云南省中马HF-VHF先进射电天文技术国际联合实验室, 云南, 昆明, 650216
3.
西安交通大学, 陕西, 西安, 710049
4.
西安导航技术研究所, 陕西, 西安, 710068
5.
杭州市天文学会, 浙江, 杭州, 310000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-7673 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
国家自然科学基金重点项目
;
国家自然科学重点专项
;
云南省应用基础研究计划面上项目
;
科技部平方公里阵列射电望远镜(SKA)专项
;
中国科学院国际伙伴计划
;
昆明市对外(国际)合作基地项目
|
文献收藏号
|
CSCD:7550383
|
参考文献 共
34
共2页
|
1.
Oberoi D. LOFAR: the potential for solar and space weather studies.
Planetary & Space Science,2004,52(15):1415-1421
|
CSCD被引
3
次
|
|
|
|
2.
Morosan D E. LOFAR tied-array imaging of Type III solar radio bursts.
Astronomy and Astrophysics,2014,568(8):A67
|
CSCD被引
5
次
|
|
|
|
3.
Cairns I H. Solar, interplanetary, planetary, and related extra-solar system science for LOFAR.
Planetary & Space Science,2004,52(15):1423-1434
|
CSCD被引
2
次
|
|
|
|
4.
Stappers B W. Observing pulsars and fast transients with LOFAR.
Astronomy and Astrophysics,2011,530:A80
|
CSCD被引
4
次
|
|
|
|
5.
Coenen T. The LOFAR pilot surveys for pulsars and fast radio transients.
Astronomy and Astrophysics,2014,570:A60
|
CSCD被引
9
次
|
|
|
|
6.
Rottgering H J A. LOFAR-Opening a new window on the universe.
Proceedings of the Conference on Cosmology, Galaxy Formation and Astro-particle Physics,2006
|
CSCD被引
1
次
|
|
|
|
7.
Deboer D R. Hydrogen Epoch of Reionization Array (HERA).
Proceedings of the 2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium),2015
|
CSCD被引
1
次
|
|
|
|
8.
Haarlem V M P. LOFAR: the low-frequency array.
Astronomy and Astrophysics,2013,556:A2
|
CSCD被引
41
次
|
|
|
|
9.
Cohen A S. The VLA Low-frequency Sky Survey.
The Astronomical Journal,2007,134(3):1245-1262
|
CSCD被引
3
次
|
|
|
|
10.
Benthem P. The Aperture Array Verification System 1: system overview and early commissioning results.
Astronomy and Astrophysics,2021,665:A5
|
CSCD被引
1
次
|
|
|
|
11.
Sokolowski M. Preliminary sensitivity verification of the SKA-Low AAVS2 prototype.
Proceedings of the 15~(th) European Conference on Antennas and Propagation (EuCAP),2021
|
CSCD被引
1
次
|
|
|
|
12.
Macario G. Characterization of the SKA1-Low prototype station Aperture Array Verification System 2.
Journal of Astronomical Telescopes, Instruments and Systems,2022,8(1):011014
|
CSCD被引
1
次
|
|
|
|
13.
Borg J. On-sky calibration of a SKA1-low station in the presence of mutual coupling.
Monthly Notices of the Royal Astronomical Society,2020,496(1):933-942
|
CSCD被引
1
次
|
|
|
|
14.
Hall P J. First results from AAVS 0.5: a prototype array for next-generation radio astronomy.
Proceedings of the 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA),2013
|
CSCD被引
1
次
|
|
|
|
15.
De Leraacedo E. SKA aperture array verification system: electromagnetic modeling and beam pattern measurements using a micro UAV.
Experimental Astronomy,2018,45:1-20
|
CSCD被引
3
次
|
|
|
|
16.
Gavidia A. A search for time-variable, low-frequency sources with HERA.
Proceedings of the American Astronomical Society Meeting,2021
|
CSCD被引
1
次
|
|
|
|
17.
Jiwani A. Square kilometer array station configuration using two-stage beamforming.
Publications of the Astronomical Society of Australia,2013,30:e023
|
CSCD被引
1
次
|
|
|
|
18.
武向平.
中国SKA科学报告,2019
|
CSCD被引
4
次
|
|
|
|
19.
Deboer D R. Australian SKA pathfinder: a high-dynamic range wide-field of view survey telescope.
Proceedings of the IEEE,2009,97(8):1507-5121
|
CSCD被引
7
次
|
|
|
|
20.
Combes F. Science with SKA.
Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics,2021:197-202
|
CSCD被引
1
次
|
|
|
|
|