石墨烯及碳化硅增强铝基复合材料的冲击力学行为
Mechanical behavior of graphene or SiC reinforced aluminum matrix composites under dynamic loading
查看参考文献21篇
文摘
|
采用微机控制电子万能实验机和分离式霍普金森压杆(SHPB)对石墨烯增强的铝基复合材料和碳化硅增强的铝基复合材料进行准静态压缩实验和动态冲击实验,研究石墨烯增强铝基复合材料在不同应变率下的冲击力学性能,采用SEM扫描电镜研究石墨烯增强的铝基复合材料和碳化硅增强的铝基复合材料的形貌特征。结果表明:在各个应变率载荷下,添加石墨烯和添加碳化硅都增强了铝合金的屈服强度,其中,添加石墨烯对铝合金的屈服强度提升更加明显,但不影响材料的应变硬化率;相较于在材料中添加碳化硅,添加石墨烯弱化了材料的应变率效应,在高应变率条件下,添加石墨烯降低了材料的强度极限;选取部分实验数据,拟合确定了添加石墨烯和添加碳化硅两种复合材料的J-C和Z-A本构方程的参数,并比较了两种本构模型的预测能力,对于本工作所研究的复合材料,J-C模型的预测能力更好。 |
其他语种文摘
|
Quasi-static compression experiments on graphene-reinforced aluminum matrix composites were carried out by means of microcomputer controlled electronic universal testing machine,while dynamic behavior of the composites at various high strain rates was determined by split hopkinson pressure bar(SHPB).In addition,scanning electron microscopy(SEM)was employed to examine the morphological feature of aluminum matrix composites reinforced respectively by grapheme and SiC. The results show that at all strain rate,the yield strength of aluminum is improved both with addition of graphene and SiC,by incorporation of graphene,the yield strength of aluminum is improved more significantly,but without affecting the strain hardening rate of the material.In comparison with SiC as reinforcements,use of graphene undermines strain rate sensitivity of the composites,and meanwhile results in a decline in ultimate strength.J-C and Z-A constitutive models were fitted respectively to the experimental results to obtain relative parameters.Comparison between the two models suggests that J-C model is more accurate in terms of describing stress-strain behavior of both composites reinforced respectively by graphene and SiC. |
来源
|
材料工程
,2019,47(3):15-22 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2017.001457
|
关键词
|
冲击力学
;
石墨烯
;
碳化硅
;
铝基复合材料
;
本构模型
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
中国科学院力学研究所, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
文献收藏号
|
CSCD:6457519
|
参考文献 共
21
共2页
|
1.
Lin J. Reduced silanized grapheme oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties.
Applied Surface Science,2014,316:114-123
|
CSCD被引
7
次
|
|
|
|
2.
Chen Y F. Microstructure and fracture toughness of grapheme nanosheets/alumina composites.
Ceramics International,2014,40:13883-13889
|
CSCD被引
9
次
|
|
|
|
3.
Zhang Y L. Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole.
Polymer,2014,55:4990-5000
|
CSCD被引
2
次
|
|
|
|
4.
Wang R G. Attapulgite-graphene oxide hybrids as thermal and mechanical reinforcements for epoxy composites.
Composites Science and Technology,2013,87:29-35
|
CSCD被引
8
次
|
|
|
|
5.
黄伯云. 复合材料研究新进展(上).
金属世界,2007(2):46-48
|
CSCD被引
8
次
|
|
|
|
6.
修子扬. 可用于空间的SiCp/Al复合材料热物理性能研究.
载人航天,2012,18:62-64
|
CSCD被引
1
次
|
|
|
|
7.
郑喜军. 碳化硅颗粒增强铝基复合材料的研究现状及发展趋势.
材料热处理技术,2011,40(12):92-95
|
CSCD被引
4
次
|
|
|
|
8.
李炯利. 石墨烯含量对铝基复合材料微观组织和力学性能的影响.
稀有金属,2018,42(3):252-258
|
CSCD被引
9
次
|
|
|
|
9.
Bastwros M. Effect of ball milling on graphene reinforced Al6061composite fabricated by semi-solid sintering.
Composites:Part B,2014,60:111-118
|
CSCD被引
34
次
|
|
|
|
10.
Li Z. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites.
Nanotechnology,2014,25:325601
|
CSCD被引
19
次
|
|
|
|
11.
燕绍九. 石墨烯增强铝基纳米复合材料研究进展.
航空材料学报,2016,36(3):57-70
|
CSCD被引
21
次
|
|
|
|
12.
Yan S J. Investigating aluminum alloy reinforced by graphene nanoflakes.
Materials Science and Engineering:A,2014,612:440-444
|
CSCD被引
40
次
|
|
|
|
13.
洪起虎. 氧化石墨烯/铜基复合材料的微观结构及力学性能.
材料工程,2016,44(9):1-7
|
CSCD被引
9
次
|
|
|
|
14.
李涛. 颗粒增强铝基复合材料的研究与进展.
黑龙江科技信息,2014(1):41-42
|
CSCD被引
4
次
|
|
|
|
15.
崔岩. 中国航空航天用多功能SiC/Al复合材料研究进展.
中国航空学报 (英文版),2008(6):578-584
|
CSCD被引
2
次
|
|
|
|
16.
Michlkov M. Effect of homogenization treatment on the fracture behavior of silicon nitride/grapheme nanoplate lets composites.
Journal of the European Ceramic Society,2014,34:3291-3299
|
CSCD被引
1
次
|
|
|
|
17.
Ramirez C. Extraordinary toughening enhancement and flexural strength in Si_3N_4 composites using graphene sheets.
Journal of the European Ceramic Society,2014,34:161-169
|
CSCD被引
8
次
|
|
|
|
18.
王宏凯. 涂层材料的J-C本构模型参数标定.
火炮发射与控制学报,2015,36(3):36-39
|
CSCD被引
1
次
|
|
|
|
19.
Bartolucci F S. Graphene-aluminum nanocomposites.
Materials Science and Engineering:A,2011,528:7933-7937
|
CSCD被引
1
次
|
|
|
|
20.
Latie H F. Effects of sintering temperature and graphite addition on the mechanical properties of aluminum.
Journal of Industrial and Engineering Chemistry,2012,18:2129-2134
|
CSCD被引
12
次
|
|
|
|
|