低功率激光辐照对弯曲成形件表面残余应力的影响
Effect of Low-power Laser Irradiation on the Surface Residual Stress of Bending Part
查看参考文献31篇
文摘
|
目的针对航空铝合金构件维修加工后存在残余拉应力,进而影响部件使用寿命的难题,研究一种基于低能量输入激光辐照消减构件表面残余应力的方法。方法采用激光辐照材料残余应力集中区域,通过激光热作用诱导弹性内能转化为塑性功,从而降低残余应力。为了验证该方法的可行性,对2A12铝合金试样进行四点弯曲加载,通过不均匀塑性变形产生残余应力,再通过激光扫描应力集中区域诱导表面残余应力局部释放。结果采用X射线衍射法测量表面残余应力的结果表明,激光扫描后,试样表面的残余拉应力完全消除,当激光功率增大到95 W时,残余应力可以消除77%左右。通过理论分析和微观形貌对比,发现材料在激光辐照前后并没有相变。通过分析材料Al(311)晶面X射线衍射峰半高宽的变化,发现激光辐照使材料表面位错密度下降,随着激光功率增大,位错密度下降幅度增大,这也是残余应力降低的原因之一。结论在不改变材料微观组织的前提下,采用低功率激光辐照可以显著降低材料表面残余应力分布。 |
其他语种文摘
|
Aiming at the problem of the residual tensile stress of aeronautical aluminum alloy parts after repair and processing, which affects the service life of components, a method based on low-energy input laser irradiation to reduce the surface residual stress of components is studied. The laser beam irradiates the concentration area of the residual stress,converting the elastic internal energy into plastic work by laser heating, resulting in the residual stress reduced. In order to verify the feasibility of this approach, four-point bending test was conducted on the 2A12 aluminum alloy sample, the residual stress was caused by the non-uniform plastic deformation during the bending. The laser radiating relieved the residual stress by scanning the stress concentration region. The surface residual stress of the sample was measured via X-ray diffraction. The results showed that the residual stress decreased significantly after laser scanning, and the tensile residual stress was completely eliminated. When the laser power was increased to 95 W, the compressive residual stress could be eliminated by around 77%. Through theoretical analysis and microscopic morphology comparison, it was found that no phase transformation occured before and after laser scanning. By analyzing the variation of the full width at half maximum for the diffraction peak of Al (311) crystalline plane, it was found that the laser heating decreased the dislocation density. With the increase of laser power, the decrease of dislocation density increases, which was one of the reasons for residual stress relaxation. Without changing the microstructure of the material, low-power laser irradiation could significantly reduce the surface residual stress distribution of the material. |
来源
|
表面技术
,2021,50(3):198-205 【核心库】
|
DOI
|
10.16490/j.cnki.issn.1001-3660.2021.03.018
|
关键词
|
激光辐照
;
残余应力
;
X射线衍射法
;
微观组织
;
位错密度
|
地址
|
1.
中国科学院大学工程科学学院, 北京, 100049
2.
中国科学院力学研究所先进制造工艺力学实验室, 北京, 100049
3.
陆军装甲兵学院, 再制造技术国家重点实验室, 北京, 100072
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-3660 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:6939157
|
参考文献 共
31
共2页
|
1.
Sim M W. Challenges of residual stress and part distortion in the civil airframe industry.
International journal of microstructure and materials properties,2010,5(4/5):446
|
CSCD被引
5
次
|
|
|
|
2.
Li J G. Distortion caused by residual stresses in machining aeronautical aluminum alloy parts: recent advances.
The international journal of advanced manufacturing technology,2016,89(1/4):997-1012
|
CSCD被引
18
次
|
|
|
|
3.
Masoudi S. Effect of machining- induced residual stress on the distortion of thin-walled parts.
The international journal of advanced manufacturing technology,2015,76(1/4):597-608
|
CSCD被引
14
次
|
|
|
|
4.
Mcclung R C. A literature survey on the stability and significance of residual stresses during fatigue.
Fatigue and fracture of engineering material and structures,2007,30(3):173-205
|
CSCD被引
16
次
|
|
|
|
5.
Sim M W.
Residual stress engineering in manufacture of aerospace structural parts,2009
|
CSCD被引
1
次
|
|
|
|
6.
Kannan M B. 8-Stress corrosion cracking (SCC) of aluminium alloys.
Stress corrosion cracking,2011,17(11):307-340
|
CSCD被引
1
次
|
|
|
|
7.
Orner G.
Development of stress relief treatments for high strength aluminum alloys,1965:11091
|
CSCD被引
1
次
|
|
|
|
8.
Robinson J S. Residual stress development and relief in high strength aluminium alloys using standard and retrogression thermal treatments.
Materials science and technology,2003,19(4):512-518
|
CSCD被引
5
次
|
|
|
|
9.
Myer R. Stress-relief of aluminium for aircraft.
Metal progress,1959,3:112-115
|
CSCD被引
1
次
|
|
|
|
10.
Kleint R. Stress relief in aluminum forgings.
Light metal age,1958,2:14-21
|
CSCD被引
1
次
|
|
|
|
11.
Betteridge W. The relief of internal stresses in aluminium alloys by cold working.
Journal of the institute of metals,1947,73(1):171-177
|
CSCD被引
1
次
|
|
|
|
12.
Klein J. Cold reduction technique puts more forgings in the air.
Precision metal molding,1967,25(6):53-54
|
CSCD被引
1
次
|
|
|
|
13.
Robinson J. 50th anniversary article: The origin and management of residual stress in heat-treatable aluminium alloys.
Strain,2014,50(3):185-207
|
CSCD被引
8
次
|
|
|
|
14.
逯博文.
复合磁场去应力装置研究,2017
|
CSCD被引
1
次
|
|
|
|
15.
石永军.
激光热变形机理及复杂曲面板材热成形工艺规划研究,2007
|
CSCD被引
12
次
|
|
|
|
16.
彭青. 激光辅助预应力成形的相似性问题.
中国激光,2009(5):239-244
|
CSCD被引
1
次
|
|
|
|
17.
彭青. 整体壁板激光辅助预应力成形.
航空学报,2009(8):190-194
|
CSCD被引
1
次
|
|
|
|
18.
刘成清. 塑性阶段卸载后的残余应力理论计算及数值模拟.
建筑结构,2013(s2):441-444
|
CSCD被引
1
次
|
|
|
|
19.
Ko M. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes.
Journal of materials processing technology,2006,174(1/3):342-354
|
CSCD被引
50
次
|
|
|
|
20.
Rahdari M. Microstructural control and layer continuity in deformation bonding of metallic laminated composites.
Materials science and engineering: A,2018,738:98-110
|
CSCD被引
10
次
|
|
|
|
|