帮助 关于我们

返回检索结果

压缩感知中确定性测量矩阵构造算法综述
A Survey on Deterministic Measurement Matrix Construction Algorithms in Compressive Sensing

查看参考文献50篇

王强   李佳   沈毅  
文摘 测量矩阵在压缩感知中起着关键性的作用,其性能会影响原始信号的压缩与重构。现有的测量矩阵多数为随机的,它们在实际应用中有存储量大、效率低等缺点,且在硬件上难以实现,故构造确定性测量矩阵对压缩感知理论的推广与应用具有重要的意义。本文回顾了国内外学者在确定性测量矩阵构造方面的研究,着重对目前已有的构造算法进行详细的介绍和分类,最后根据多种指标综合评述了各种算法的性能。
其他语种文摘 Measurement matrix ,whose performance can affect the compression and reconstruction of original signal ,plays a key role in compressive sensing .Most of the existing measurement matrices are random ones ,which have shortcomings in practical application ,such as large storage capacity ,low efficiency and difficulty when implemented in the hardware .Therefore ,it is of im-portant practical significance to construct deterministic measurement matrix for the promotion and application of the compressive sensing theory .In this paper ,the existing construction algorithms for deterministic measurement matrix are reviewed ,introduced and classified in detail .Finally the performances of all algorithms are summarized in terms of common indicators .
来源 电子学报 ,2013,41(10):2041-2050 【核心库】
DOI 10.3969/j.issn.0372-2112.2013.10.027
关键词 压缩感知 ; 确定性测量矩阵 ; 有限等距性质 ; 信号重构
地址

哈尔滨工业大学控制科学与工程系, 黑龙江, 哈尔滨, 150001

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 电子技术、通信技术
基金 国家自然科学基金
文献收藏号 CSCD:4967653

参考文献 共 50 共3页

1.  Donoho D L. Compressed sensing. IEEE Transactions on Information Theory,2006,52(4):1289-1306 CSCD被引 2934    
2.  Candes E. Compressive sampling. Proceeding of IEEE ICM'06,2006:1433-1452 CSCD被引 1    
3.  马坚伟. 压缩感知及其应用:从稀疏约束到低秩约束优化. 信号处理,2012,28(5):609-623 CSCD被引 36    
4.  Aharon M. The K-SVD:An algorithm for designing of over complete dictionaries for sparse representations. IEEE Transactions on Image Processing,2006,54(11):4311-4322 CSCD被引 871    
5.  Sigg C D. Learning dictionaries with bounded self-coherence. IEEE Signal Processing Letter,2012,19(12):861-864 CSCD被引 5    
6.  Mallat S. A Wavelet Tour of Signal Processing,1996 CSCD被引 5    
7.  Rauhut H. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory,2008,54(5):2210-2219 CSCD被引 75    
8.  Duarte Marco F. Introduction to Compressive Sensing,2012 CSCD被引 1    
9.  焦李成. 压缩感知回顾与展望. 电子学报,2011,7(7):1651-1662 CSCD被引 179    
10.  杨海蓉. 压缩传感理论与重构算法. 电子学报,2011,39(1):142-148 CSCD被引 73    
11.  Kim S J. An interior-point method for large-scale l_1 regularized least squares. IEEE Journal of Selected Topics in Signal Processing,2007,1(4):606-617 CSCD被引 151    
12.  Fiqueiredo M A T. Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing,2007,1(4):586-597 CSCD被引 384    
13.  Tropp J A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory,2007,53(12):4655-4666 CSCD被引 1101    
14.  Dai W. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory,2009,55(5):2230-2249 CSCD被引 252    
15.  Needell D. CoSaMP:Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis,2008,26(3):301-321 CSCD被引 355    
16.  Chen B S. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing,1998,20(1):33-61 CSCD被引 2    
17.  李志林. 一种有效的压缩感知图像重建算法. 电子学报,2011,39(12):2796-2800 CSCD被引 10    
18.  Candes E. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory,2006,52(2):489-509 CSCD被引 1361    
19.  Tropp J A. Greed is good:Algorithmic results for sparse approximation. IEEE Transactions on Information Theory,2004,50(10):2231-2242 CSCD被引 165    
20.  Sustik M A. On the existence of equiangular tight frames. Linear Algebra and its Applications,2007,426(2/3):619-635 CSCD被引 5    
引证文献 30

1 孙玉宝 联合低秩与稀疏先验的高光谱图像压缩感知重建 电子学报,2014,42(11):2219-2224
CSCD被引 5

2 夏树涛 基于 Berlekamp-Justesen 码的压缩感知确定性测量矩阵的构造 电子与信息学报,2015,37(4):763-769
CSCD被引 3

显示所有30篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号