帮助 关于我们

返回检索结果

Ramp Scheme Based on CRT for Polynomial Ring over Finite Field

查看参考文献26篇

Ding Jian 1,2   Ke Pinhui 3   Lin Changlu 3 *   Wang Huaxiong 4  
文摘 Chinese Reminder Theorem (CRT) for integers has been widely used to construct secret sharing schemes for different scenarios,but these schemes have lower information rates than that of Lagrange interpolation-based schemes.In ASIACRYPT 2018,Ning,et al.constructed a perfect (r,n)-threshold scheme based on CRT for polynomial ring over finite field,and the corresponding information rate is one which is the greatest case for a (r,n)-threshold scheme.However,for many practical purposes,the information rate of Ning,et al.scheme is low and perfect security is too much security.In this work,the authors generalize the Ning,et al.(r,n)-threshold scheme to a (t,r,n)-ramp scheme based on CRT for polynomial ring over finite field,which attains the greatest information rate (r-t) for a (t,r,n)-ramp scheme.Moreover,for any given 2 ≤ r1
来源 Journal of Systems Science and Complexity ,2023,36(1):129-150 【核心库】
DOI 10.1007/s11424-022-1292-4
关键词 Chinese Reminder Theorem ; polynomial ring ; ramp scheme ; threshold changeable secret sharing
地址

1. College of Computer and Cyber Security,Fujian Normal University, Fuzhou, 350007  

2. School of Mathematics and Big Data,Chaohu Univeristy, Hefei, 238024  

3. School of Mathematics and Statistics,Fujian Normal University, Fujian Provincial Key Lab of Network Security and Cryptology, Fuzhou, 350007  

4. School of Physical and Mathematical Sciences,Nanyang Technological University, Singapore, Singapore, 639798

语种 英文
文献类型 研究性论文
ISSN 1009-6124
学科 自动化技术、计算机技术
基金 国家自然科学基金 ;  福建省自然科学基金 ;  University Natural Science Research Project of Anhui Province ;  the Singapore Ministry of Education
文献收藏号 CSCD:7551068

参考文献 共 26 共2页

1.  Blakley G R. Safeguarding cryptographic keys. Proceedings of the National Computer Conference' 1979, AFIPS Proceedings. 48,1979:313-317 CSCD被引 1    
2.  Shamir A. How to share a secret. Communications of the ACM,1979,22(11):612-613 CSCD被引 1191    
3.  Asmuth C. A modular approach to key safeguarding. IEEE Trans. Inf. Theory,1983,29(2):208-210 CSCD被引 105    
4.  Harn L. Weighted secret sharing based on the Chinese Remainder Theorem. Int. Netw. Secur,2014,16(6):420-425 CSCD被引 1    
5.  Harn L. Multilevel threshold secret sharing based on the Chinese Remainder Theorem. Inf. Process. Lett,2014,114(9):504-509 CSCD被引 4    
6.  Liu Y. A novel verifiable secret sharing mechanism using theory of numbers and a method for sharing secrets. Int. J. Commun. Syst,2015,28(7):1282-1292 CSCD被引 1    
7.  Blakley G R. Security of ramp schemes. Advances in Cryptology-CRYPTO 1984, Lecture Notes in Computer Science. 196,1985:242-268 CSCD被引 1    
8.  Huang W. Communication efficient secret sharing. IEEE Trans. Inf. Theory,2016,62(12):7195-7206 CSCD被引 3    
9.  Ning Y. Constructing ideal secret sharing schemes based on Chinese Remainder Theorem. Advances in Cryptology-ASIACRYPT 2018, Lecture Notes in Computer Science. 11274,2018:310-331 CSCD被引 1    
10.  Martin K M. Changing thresholds in the absence of secure channels. Information Security and Privacy, ACISP 1999, Lecture Notes in Computer Science. 1587,1999:177-191 CSCD被引 1    
11.  Wang H. On secret reconstruction in secret sharing schemes. IEEE Trans. Inf. Theory,2008,54(1):473-480 CSCD被引 4    
12.  Zhang Z. Threshold changeable secret sharing schemes revisited. Theor. Compu. Sci,2012,418:106-115 CSCD被引 5    
13.  Bitar R. Staircase codes for secret sharing with optimal communication and read overheads. IEEE Trans. Inf. Theory,2018,64(6):4191-4206 CSCD被引 1    
14.  Lin F. Threshold changeable ramp secret sharing. Cryptology and Network Security, CANS 2019, Lecture Notes in Computer Science. 11829,2019:308-327 CSCD被引 1    
15.  Steinfeld R. Lattice-based threshold-changeability for standard crt secret-sharing schemes. Finite Fields Their Appl,2006,12(4):653-680 CSCD被引 3    
16.  Steinfeld R. Lattice-based threshold changeability for standard shamir secret-sharing schemes. IEEE Trans. Inf. Theory,2007,53(7):2542-2559 CSCD被引 5    
17.  Ding J. Optimal threshold changeable secret sharing with new threshold change range. ProvSec 2020, LNCS. 12505,2020:361-378 CSCD被引 1    
18.  Harn L. Group authentication. IEEE Trans. Comput,2013,62(9):1893-1898 CSCD被引 13    
19.  Harn L. Secure secret reconstruction and multi-secret sharing schemes with unconditional security. Security Comm. Networks,2014,7(3):567-573 CSCD被引 8    
20.  Harn L. Dynamic threshold secret reconstruction and its application to the threshold cryptography. Inf. Process. Lett,2015,115(11):851-857 CSCD被引 3    
引证文献 1

1 Chen Shaoshi Preface to the Special Topic on Computer Mathematics Journal of Systems Science and Complexity,2023,36(1):1-2
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号