一米新真空太阳望远镜多波段光谱仪杂散光及空间PSF的测量
Stray-Light and Space PSF Measuring of the Multi-Band Spectrometer of the 1m New Vacuum Solar Telescope
查看参考文献10篇
文摘
|
杂散光由于光学表面散射和地球大气散射引起,降低了光谱图像的空间分辨率。光学系统都存在杂散光,要获得高分辨的光谱图像需要对杂散光进行抑制。多波段光谱仪的杂散光分为两类:(1)光谱桶内由于光机结构引起的杂射光; (2)混在成像光路中并参与色散的杂散光。第1种杂散光可直接测量,约占光谱能量的3%左右。第2种杂散光由于受多种因素影响,所以很难精确测量。从日食光谱测量中测得在观测目标周围对目标产生的杂散光的下限约为10%,并对空间方向的点扩散函数进行测量,为光谱的高分辨重建提供参考。 |
其他语种文摘
|
Stray-light is caused by the scattering of optical surfaces and the Earth's atmosphere; which degrades the spatial resolution of spectral images. Almost every optical system is affected by stray-light. To obtain high-resolution spectral images,we need to eliminate the effect caused by stray-light as much as possible. The stray-light of multi-waveband spectrometer can be divided into two categories:(1)stray-light caused by the scattering of the optical and mechanical structures in the spectral barrel and (2)stray-light mixed in the imaging optical path and participating in dispersion. The first category can be measured directly, and it accounts for 3% of spectral energy. It is difficult to measure the second category precisely because it could be affected by many factors. We measured the stray-light around the target from the eclipse spectral observation,and found that the lower limit of the stray-light was about 10%. In addition,we measured the point spread function (PSF)of the multi-band spectrometer in the space direction. This work would provide reference for future high-resolution spectrum reconstruction. |
来源
|
天文研究与技术
,2017,14(1):52-59 【核心库】
|
关键词
|
1 m太阳望远镜
;
多波段光谱仪
;
杂散光
;
点扩散函数
|
地址
|
中国科学院云南天文台, 云南, 昆明, 650011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-7673 |
学科
|
机械、仪表工业 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5905628
|
参考文献 共
10
共1页
|
1.
Liu Z. 1-meter near-infrared solar telescope.
First Asia-Pacific Solar Physics Meeting ASI Conference Series,2011:9-17
|
CSCD被引
6
次
|
|
|
|
2.
Koppen J. Sunspot and stray light observations during the 1971,February 25 partial solar eclipse.
Solar Physics,1975,42(2):325-332
|
CSCD被引
1
次
|
|
|
|
3.
Sanchez Almeida J. Instrumental polarization in the focal plane of telescopes.
Astronomy & Astrophysics,1992,260(1/2):543-555
|
CSCD被引
1
次
|
|
|
|
4.
Benton J A. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function.
Tissue Engineering Part A,2009,15(11):3221-3231
|
CSCD被引
3
次
|
|
|
|
5.
王瑞. 一米新真空红外太阳望远镜多波段光谱仪光谱弯曲分析.
天文研究与技术---国家天文台台刊,2014,11(2):165-167
|
CSCD被引
4
次
|
|
|
|
6.
许方宇. 抚仙湖一米新真空太阳望远镜6米近红外光谱仪装调及太阳1.56微米光谱的初步观测结果.
天文研究与技术---国家天文台台刊,2014,11(2):168-175
|
CSCD被引
3
次
|
|
|
|
7.
Beck C. Stray-light contamination and spatial deconvolution of slit-spectrograph observations.
Astronomy & Astrophysics,2011,535(11):1038-1050
|
CSCD被引
2
次
|
|
|
|
8.
Mattig W. Observations of stray-light and sunspot intensities during the Mercury transit of 1970 May 9.
Solar Physics,1971,18(3):434-442
|
CSCD被引
1
次
|
|
|
|
9.
Wang Rui. The first observation and data reduction of the Multi-wavelength Spectrometer on the New Vacuum Solar Telescope.
Research in Astronomy & Astrophysics,2013,13(10):1240-1254
|
CSCD被引
23
次
|
|
|
|
10.
Rezaei R. Relation between photospheric magnetic field and chromospheric emission.
Astronomy & Astrophysics,2007,466:1131-1144
|
CSCD被引
1
次
|
|
|
|
|