喀斯特小流域石灰土硫形态和硫酸盐还原菌分布特征
Forms of Sulfur and Distribution of Sulfate-Reducing Bacteria in Limestone Soil of Small Karst Catchment
查看参考文献46篇
文摘
|
用土壤硫形态连续提取和微生物学方法分析了石灰土中总硫、SO_4~(2-) 、总还原态硫(TRIS)、有机硫含量以及硫酸盐还原菌(SRB)类群和数量,目的是阐明西南酸沉降地区土壤中硫化物积累和SRB的分布特征。有机硫是主要的硫形态,SO_4~(2-)是主要的无机硫形态。石灰土中检出脱硫叶菌属和脱硫弧菌属-脱硫微菌属类群。石灰土剖面中SRB数量与TRIS含量增大的深度对应SO_4~(2-) -S含量降低的深度,指示石灰土中存在SO_4~(2-)异化还原反应。石灰土较高pH值和较低的黏粒含量不利于SO_4~(2-)吸附,生物滞留后剩余SO_4~(2-)主要通过淋溶迁移出石灰土剖面。有机硫是石灰土中大气酸沉降输入SO_4~(2-)的主要硫滞留方式,在硫沉降输入通量显著降低后,石灰土中有机硫矿化在较长时期内可能导致大量SO_4~(2-)输入流域水体,与SO_4~(2-)淋溶输出有关的流域土壤和水体物理化学组成变化应予以关注。 |
其他语种文摘
|
Samples of limestone soil collected from a small karst catchment affected by acid deposition in Southwest China were collected for analysis of total sulfur (TS), organic S, SO_4~(2-) -S, total reduced inorganic sulfur (TRIS), and groups of sulfate-reducing bacteria (SRB) and their populations with the soil sulfur sequential extraction method and microbiological methods in an attempt to determine forms of sulfur and to characterize SRB distribution in the soil. It was found that organic sulfur was the major form of sulfur, while SO_4~(2-) was that of inorganic sulfur in the limestone soil. Bacteria of Desulfobulbus genus and Desulfovibrio-Desulfomicrobium group were detected in the limestone soil. The depth of the soil layer where SRB began to increase in population and TRIS in content corresponded well to that where SO_4~(2-) -S began to decrease in content, which indicates that dissimilatory SO_4~(2-) reduction occurs in the limestone soil. The high pH and low clay content of the soil are adverse to SO_4~(2-) adsorption; therefore the remaining SO_4~(2-) after biological S retention is easily leached out of the limestone soil. SO_4~(2-) entering the soil with atmospheric deposition is retained mostly in the form of organic sulfur, of which mineralization releases large volumes of SO_4~(2-) into rivers and groundwater for a long period of time after annual sulfur deposition rate dropped by a large margin, thus affecting physic-chemical properties of the soils and chemical composition of the surrounding waterbodies. Therefore, more attention should be paid to such environmental responses in future. |
来源
|
生态与农村环境学报
,2017,33(7):645-652 【核心库】
|
DOI
|
10.11934/j.issn.1673-4831.2017.07.009
|
关键词
|
喀斯特小流域
;
石灰土
;
硫形态
;
硫酸盐还原菌
|
地址
|
1.
贵州师范学院地理与旅游学院, 环境地球化学国家重点实验室, 贵州, 贵阳, 550018
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1673-4831 |
学科
|
普通生物学 |
基金
|
国家自然科学基金
;
贵州省自然科学基金
;
中国博士后科学基金
|
文献收藏号
|
CSCD:6045701
|
参考文献 共
46
共3页
|
1.
刘丛强. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环.
地球化学,2008,37(4):404-414
|
CSCD被引
116
次
|
|
|
|
2.
苏维词. 中国西南岩溶山区石漠化的现状成因及治理的优化模式.
水土保持学报,2002,16(2):29-32
|
CSCD被引
102
次
|
|
|
|
3.
Zhao D. Acid Rain in Southwestern China.
Atmospheric Environment,1988,22(2):349-358
|
CSCD被引
15
次
|
|
|
|
4.
Wang Z Y. Accumulation of Different Sulfur Fractions in Chinese Forest Soil Under Acid Deposition.
Journal of Environmental Monitoring,2011,13(9):2463-2470
|
CSCD被引
5
次
|
|
|
|
5.
Zhang W. Speciation and Isotopic Composition of Sulfur in Limestone Soil and Limestone Soil in Karst Areas,Southwest China:Implications for Different Responses to Acid Deposition.
Journal of Environmental Quality,2014,43(3):809-819
|
CSCD被引
7
次
|
|
|
|
6.
Larssen T. Acid Rain in China.
Environmental Science & Technology,2006,40(2):418-425
|
CSCD被引
67
次
|
|
|
|
7.
Alewell C. Spotting Zones of Dissimilatory Sulfate Reduction in a Forested Catchment:The 34 S-35 S Approach.
Environmental Pollution,2001,112(3):369-377
|
CSCD被引
10
次
|
|
|
|
8.
Likens G E. The Biogeochemistry of Sulfur at Hubbard Brook.
Biogeochemistry,2002,60(3):235-316
|
CSCD被引
6
次
|
|
|
|
9.
Kirchner J W. Base Cation Depletion and Potential Long-Term Acidification of Norwegian Catchments.
Environmental Science & Technology,1995,29(8):1953-1960
|
CSCD被引
8
次
|
|
|
|
10.
Driscoll C T. Effects of Acidic Deposition on Forest and Aquatic Ecosystems in New York State.
Environmental Pollution,2003,123(3):327-336
|
CSCD被引
18
次
|
|
|
|
11.
Daly K. Development of Oligonucleotide Probes and PCR Primers for Detecting Phylogenetic Subgroups of Sulfate-Reducing Bacteria.
Microbiology,2000,146(2):1693-1705
|
CSCD被引
6
次
|
|
|
|
12.
Castro H F. Phylogeny of Sulfate-Reducing Bacteria.
FEMS Microbiology Ecology,2000,31:1-9
|
CSCD被引
31
次
|
|
|
|
13.
Zhang W. Analyses of the Vertical and Temporal Distributions of Sulfate-Reducing Bacteria in Lake Erhai, Southwest China.
Research Journal of Chemistry and Environment,2012,16(3):44-51
|
CSCD被引
2
次
|
|
|
|
14.
Hao O J. Sulfate-Reducing Bacteria.
Critical Reviews in Envirnmental Science and Technology,1996,26(2):155-187
|
CSCD被引
7
次
|
|
|
|
15.
Kleikemper J. Sulfate Reducing Bacterial Community Response to Carbon Source Amendments in Contaminated Aquifer Microcosms.
FEMS Microbiology Ecology,2002,42(1):109-118
|
CSCD被引
4
次
|
|
|
|
16.
Baldwin D S. Impact of Sulfate Pollution on Anaerobic Biogeochemical Cycles in a Wetland Sediment.
Water Research,2012,46(4):965-974
|
CSCD被引
7
次
|
|
|
|
17.
Bahr M. Molecular Characterization of Sulfate-Reducing Bacteria in a New England Salt Marsh.
Environmental Microbiology,2005,7(8):1175-1185
|
CSCD被引
6
次
|
|
|
|
18.
Midwood A J. Soil Carbonate Decomposition by Acid Has Little Effect on δ~(13)C of Organic Matter.
Soil Biology & Biochemistry,1998,30(10):1301-1307
|
CSCD被引
18
次
|
|
|
|
19.
Zhu S F. Vertical Patterns of Stable Carbon Isotope in Soils and Particle-Size Fractions of Karst Areas,Southwest China.
Environmental Earth Sciences,2006,50(8):1119-1127
|
CSCD被引
4
次
|
|
|
|
20.
Prietzel J. Transformation of Simulated Wet Sulfate Deposition in Forest Soils Assessed by a Core Experiment Using Stable Sulfur Isotopes.
Water Air and Soil Pollution,1995,79(1):243-260
|
CSCD被引
4
次
|
|
|
|
|