基于景观生态风险评价的宁江流域景观格局优化
Landscape pattern optimization in Ningjiang River Basin based on landscape ecological risk assessment
查看参考文献59篇
文摘
|
流域景观生态风险受到多源因素的综合作用,识别流域景观生态风险是实现景观格局优化的基础与前提,景观格局优化是应对生态风险的有效手段。以宁江流域为研究区,采用空间主成分分析法,从“自然—人类社会—景观格局”3个维度对流域景观生态风险进行综合评价,基于景观生态风险评价结果,构建累积阻力表面,利用最小累积阻力模型进行了流域景观格局的优化。结果表明:人类社会和景观格局因素对综合风险影响更为强烈,地形和距水体距离等自然因素对综合生态风险影响较弱;宁江流域整体景观生态风险偏大,较高景观生态风险区域位于流域西南部,面积为523.99 km~2,占流域面积的36.06%;识别出流域生态源地为面积大于50 km~2的林地和面积大于0.2 km~2的水体。研究构建了15条生态廊道,一级生态廊道长度大于30000 m,二级生态廊道介于10000~30000 m之间,三级生态廊道长度在10000 m以内;识别了19个生态节点,形成了多层次生态网络。通过对比研究区景观格局优化前后的连通度发现,优化后流域整体景观格局连通度得到明显提升。 |
其他语种文摘
|
The ecological risks facing the landscape in the Ningjiang River Basin are influenced by multiple parameters. Landscape optimization is an effective way to assess the detrimental effects on the ecosystem. In this study, an integrated "natural- social- landscape" landscape ecological risk assessment system was produced, and the landscape ecological risk classification of the Ningjiang River Basin was based on spatial principal component analysis. Ecological resistance surfaces were constructed using the results of the landscape ecological risk analysis. The landscape resistance surfaces were produced based on the minimum cumulative resistance model (MCR). The results show that human activity and landscape patterns had a more significant influence on the final risk assessment than natural factors do, such as terrain and distance from water. The landscape ecological risk was generally high, and the high ecology risk region covered 523.99 km~2, constituting the largest area and accounting for 36.06% of the research area. With the aim of decreasing the landscape ecological risk of the Ningjiang River Basin, areas of forestland greater than 50 km~2 and areas of water greater than 0.2 km~2 were selected as the eco- sources. Using interlinked points, lines and surfaces, a regional ecological network was constructed out of 15 ecological corridors. The length of the first level corridors was greater than 30000 m, the length of second level corridors was between 10000 m and 30000 m, and the length of the third level corridors was less than 10000 m. A total of 19 ecological nodes were produced. The landscape connectivity was significantly improved following landscape pattern optimization. The results of this study may help improve the ecological stability level in the study area and provide a scientific basis for both landscape ecological risk assessment and landscape pattern optimization research. |
来源
|
地理学报
,2019,74(7):1420-1437 【核心库】
|
DOI
|
10.11821/dlxb201907011
|
关键词
|
景观生态风险评价
;
景观格局优化
;
空间主成分分析
;
最小累积阻力模型
;
宁江流域
|
地址
|
1.
华南师范大学地理科学学院, 广州, 510631
2.
密歇根州立大学地球与环境科学系, 美国, 东兰辛, 48823
3.
广州地理研究所, 广州, 510070
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
自然地理学 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6540736
|
参考文献 共
59
共3页
|
1.
彭建. 景观生态风险评价研究进展与展望.
地理学报,2015,70(4):664-677
|
CSCD被引
198
次
|
|
|
|
2.
彭建. 基于景观格局-过程的城市自然灾害生态风险研究:回顾与展望.
地理科学进展,2014,29(10):1186-1196
|
CSCD被引
1
次
|
|
|
|
3.
李杨帆. 城市区域生态风险预警方法及其在景观生态安全格局调控中的应用.
地理研究,2017,36(3):485-494
|
CSCD被引
32
次
|
|
|
|
4.
贡璐. 博斯腾湖区域景观生态风险评价研究.
干旱区资源与环境,2007,21(1):27-31
|
CSCD被引
31
次
|
|
|
|
5.
巩杰. 基于景观格局的甘肃白龙江流域生态风险评价与管理.
应用生态学报,2014,25(7):2041-2048
|
CSCD被引
73
次
|
|
|
|
6.
许妍. 流域生态风险评价研究进展.
生态学报,2012,32(1):284-292
|
CSCD被引
61
次
|
|
|
|
7.
陈春丽. 区域生态风险评价的关键问题与展望.
生态学报,2010,30(3):808-816
|
CSCD被引
35
次
|
|
|
|
8.
刘焱序. 基于生态适应性循环三维框架的城市景观生态风险评价.
地理学报,2015,70(7):1052-1067
|
CSCD被引
76
次
|
|
|
|
9.
韩文权. 景观格局优化研究进展.
生态学杂志,2005,24(12):1487-1492
|
CSCD被引
60
次
|
|
|
|
10.
彭建. 雄安新区生态安全格局识别与优化策略.
地理学报,2018,73(4):701-710
|
CSCD被引
120
次
|
|
|
|
11.
潘竟虎. 疏勒河流域景观生态风险评价与生态安全格局优化构建.
生态学杂志,2016,35(3):791-799
|
CSCD被引
94
次
|
|
|
|
12.
Forman R.
Land Mosaics: The Ecology of Landscapes and Regions,1995
|
CSCD被引
7
次
|
|
|
|
13.
Seppelt R. Optimization methodology for land use patterns: Evaluation based on multiscale habitat pattern comparison.
Ecological Modelling,2003,168(3):217-231
|
CSCD被引
14
次
|
|
|
|
14.
Bilionis I. A stochastic optimization approach to coarse-graining using a relative-entropy framework.
Journal of Chemical Physics,2013,138(4):313-344
|
CSCD被引
2
次
|
|
|
|
15.
Forman R. Some general principles of landscape and regional ecology.
Landscape Ecology,1995,10(3):133-142
|
CSCD被引
123
次
|
|
|
|
16.
Knaapen J P. Estimating habitat isolation in landscape planning.
Landscape and Urban Planning,1992,23(1):10-16
|
CSCD被引
276
次
|
|
|
|
17.
欧定华. 基于粒子群算法的大城市近郊区景观格局优化研究-以成都市龙泉驿区为例.
地理研究,2017,36(3):553-572
|
CSCD被引
11
次
|
|
|
|
18.
秦向东. 两类常用森林火灾蔓延模型的比较.
自然灾害学报,2005,14(5):117-122
|
CSCD被引
1
次
|
|
|
|
19.
黄方. GIS支持下的吉林省西部生态环境脆弱态势评价研究.
地理科学,2003,24(1):95-100
|
CSCD被引
65
次
|
|
|
|
20.
陈利顶. 中国景观生态学发展历程与未来研究重点.
生态学报,2014,34(12):3129-3141
|
CSCD被引
86
次
|
|
|
|
|