帮助 关于我们

返回检索结果

空天通信网络关键技术综述
Key Technologies of Space-Air-Ground Communication Networks: A Survey

查看参考文献47篇

安建平 1   李建国 2   于季弘 2 *   叶能 1  
文摘 伴随信息社会向网络化、泛在化、智能化持续发展,现有地面通信网络已经无法支持日益增长的宽带业务需求、泛在海量的物联接入需求、隐蔽可靠的安全传输需求.未来通信网络要求在全球范围内实现既纵深宽广又细致入微的全方位无线接入,其进一步演进亟需突破包括网络架构和空口技术等在内的底层技术.相比于地面通信网络,空天通信网络不受地形的限制,可实现包括海洋、森林、边远地区等的立体全覆盖,可在多维度多层次尺度实现全空间范围内的信息交互,将成为满足海量异构用户泛在连接需求的关键使能技术.本文综述了空天通信网络的关键技术,首先给出了空天通信网络现有系统及未来智慧社会业务的多元化应用场景,然后从空-天-地三网、物理-网络-应用三层、有效传输-资源管理-安全防护三域出发,给出了一种空天通信网络的整体架构.本文随后从组网与接入、物理层以及资源管理与切换等角度出发分别总结了关键技术.最后,本文指出了未来空天通信网络的技术发展挑战和趋势.
其他语种文摘 With the information society continuously developing towards networking, ubiquity, and intelligence, the existing terrestrial communication network has been unable to supply the increasing demand for broadband services, ubiquitous access, and concealed and reliable transmission. The future communication network requires the realization of allround wireless access. Its further evolution urgently needs to break through the underlying technologies including network architecture and air interface technology. Compared with the terrestrial communication networks, integrated space-airground communication networks can work independently of terrain, and can achieve full coverage including oceans, forests, remote areas, etc. In addition, the information interaction can also be achieved from multiple dimensions. The integrated space-air-ground communication will be one of the key technologies enabling the ubiquitous connection of enormous heterogeneous users. This paper summarizes the key technologies of aerospace communication networks. Firstly, we introduce the existing space-air-ground communication systems and the diversified application scenarios oriented for the future smart society. Secondly, an overall architecture of the integrated space-air-ground communication networks is presented from the perspectives of space-air-ground physical space, physical-network-application network structure, and effective transmissionresource management-security protection technical route. Subsequently, the key technologies are summarized such as networking and multiple access, physical layer and resource management, etc. Finally, the technical challenges and trends of future aerospace communication networks are pointed out.
来源 电子学报 ,2022,50(2):470-479 【核心库】
DOI 10.12263/DZXB.20210029
关键词 空天通信网络 ; 空天地一体化 ; 组网接入 ; 物理层技术
地址

1. 北京理工大学网络空间安全学院, 北京, 100081  

2. 北京理工大学信息与电子学院, 北京, 100081

语种 中文
文献类型 综述型
ISSN 0372-2112
学科 电子技术、通信技术
基金 国家自然科学基金 ;  科技部重点研发计划
文献收藏号 CSCD:7195160

参考文献 共 47 共3页

1.  Xu G. Effects of solar scintillation on deep space communications: Challenges and prediction techniques. IEEE Wireless Communications,2019,26(2):10-16 CSCD被引 9    
2.  Yu Q. Virtual multi-beamforming for distributed satellite clusters in space information networks. IEEE Wireless Communications,2016,23(1):95-101 CSCD被引 13    
3.  Wang Y. Multi-resource coordinate scheduling for earth observation in space information networks. IEEE Journal on Selected Areas in Communications,2018,36(2):268-279 CSCD被引 13    
4.  张玲玲. 简述空天信息传输网络的特点、现状及发展趋势. 山东工业技术,2016(4):140 CSCD被引 1    
5.  Zhang X. Multiple-user transmission in space information networks: Architecture and key techniques. IEEE Wireless Communications,2019,26(2):17-23 CSCD被引 4    
6.  Nagpal L. Project loon: Innovating the connectivity worldwide. 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology(RTEICT),2017:1778-1784 CSCD被引 1    
7.  Lu H. Compressed robust transmission for remote sensing services in space information networks. IEEE Wireless Communications,2019,26(2):46-54 CSCD被引 3    
8.  Naser Hossein Motlagh. Low-altitude unmanned aerial vehicles-based Internet of things services: Comprehensive survey and future perspectives. IEEE Internet of Things Journal,2016,3(6):899-922 CSCD被引 22    
9.  Hubenko V P. Improving the global information grid's performance through satellite communications layer enhancements. IEEE Communications Magazine,2006,44(11):66-72 CSCD被引 6    
10.  Hamdi M. Bandwidtheffective design of a satellite-based hybrid wireless sensor network for mobile target detection and tracking. IEEE Systems Journal,2008,2(1):74-82 CSCD被引 3    
11.  Maine K. Overview of IRIDIUM satellite network. Proceedings of WESCON'95,1995:483 CSCD被引 4    
12.  吴建军. 面向未来全球化网络的欧洲ISICOM卫星通信概念系统. 卫星应用,2010(5):59-64 CSCD被引 1    
13.  翟立君. 卫星5G技术的发展和展望. 天地一体化信息网络,2021,2(1):1-9 CSCD被引 5    
14.  . ETSI TS 122 261-2018, 5G. Service requirements for next generation new services and markets(V15.6.0; 3GPP TS 22.261 version 15.6.0 Release 15),2020 CSCD被引 1    
15.  杨元喜. 北斗卫星导航系统的进展、贡献与挑战. 测绘学报,2010,39(1):1-6 CSCD被引 365    
16.  冯伟. 星地协同智能海洋通信网络发展展望. 电信科学,2020,36(10):5-15 CSCD被引 1    
17.  Li Y. A survey of underwater magnetic induction communications: Fundamental issues, recent advances, and challenges. IEEE Communications Surveys & Tutorials,2019,21(3):2466-2487 CSCD被引 7    
18.  许幼成. 低轨宽带通信卫星应用浅析. 数字通信世界,2020(2):29-30 CSCD被引 1    
19.  刘悦. “下一代铱星”系统首批10颗卫星成功发射. 国际太空,2017(4):52-54 CSCD被引 2    
20.  林莉. 美国OneWeb系统发展现状与分析. 数字通信世界,2018(9):18,22-23 CSCD被引 1    
引证文献 4

1 于季弘 空天隐蔽通信技术综述 重庆邮电大学学报. 自然科学版,2023,35(5):775-788
CSCD被引 3

2 谢辉 基于哈希接入的跨网络负载均衡 电子学报,2024,52(7):2201-2211
CSCD被引 0 次

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号