Ni基合金γ/γ′相界Ir合金化时结构特性的第一原理研究
First-Principles Study on the Structures and Properties of the γ/γ'Interface with Ir Addition in Ni-Base Single Crystal Superalloys
查看参考文献20篇
文摘
|
采用非相对论第一原理分子轨道DV-Xα模型簇方法,计算了Ni基单品超合金γ/γ′相界的电子结构,并从键重叠聚居数(QAB)、界面原子层间的部分键合强度,以及界面原子局域环境总键合强度几个方面,对Ir合金化前后γ/γ′界面的结构稳定性、脆化特性、相间断裂的难易程度等几个方面对γ/γ′相界的结构特性进行了分析。结果表明:Ir合金化能增强γ/γ′界面Ni-Ni与Ni-Al原子间的键合强度,价键强度的增加有如下的变化趋势:QNi-Ni |
其他语种文摘
|
By using the discrete variational Xa (DV-Jf,,) method, the electronic and bonding structures of yly' interfaces with and without Ir addition in Ni-base single crystal superalloys were calculated in the framework of the first-principles theory. Several bonding parameters such as the bond overlap population (2ab), the partial bonding strength of interlayer and the local environmental total bonding strength have been applied to characterize and analyze the structural stability and ductility of yly' interfaces as well as the difficulty of fracture along yly' interface. Result shows that Ir addition can improve bonding strengths of Ni-Ni and Ni-Al atom pairs in yly' interfaces, and the bonding strength increase in the following order: gNi-Ni< Qn\.\\< Qu-m< fiir-xi- With a difference in sorts and sites of atoms substituted by Ir in yly' interface, a distinct different influence of Ir addition on the structures and properties of yly' interfaces can be seen. As comparing, it is found Ir replacing Ni in the y phase is most beneficial to improve structural stability and strength against rupture along yly' interface. |
来源
|
稀有金属材料与工程
,2005,34(6):854-858 【核心库】
|
关键词
|
Ni基单晶超合金
;
γ/γ′相界
;
DV-Xα方法
;
电子结构
;
力学性能
|
地址
|
1.
湖南大学, 湖南, 长沙, 410082
2.
中国科学院金属研究所, 辽宁, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1002-185X |
学科
|
金属学与金属工艺 |
基金
|
国家973计划
|
文献收藏号
|
CSCD:2105770
|
参考文献 共
20
共1页
|
1.
Harada H. Superalloys - Materials for Advanced Power Engineering[M].
Superalloys - Materials for Advanced Power Engineering,1998:131
|
CSCD被引
1
次
|
|
|
|
2.
Anton D L. Intermetallic Compounds[M].
Intermetallic Compounds,1994
|
CSCD被引
1
次
|
|
|
|
3.
Darolia R. Superalloy[M].
Superalloy,1988:255
|
CSCD被引
2
次
|
|
|
|
4.
Murakami H. Superalloys[M].
Superalloys,2000:747
|
CSCD被引
4
次
|
|
|
|
5.
Kobayashi T. Advances in Turbine Materials.
Advances in Turbine Materials, Design and Manufacturing,1997:766
|
CSCD被引
2
次
|
|
|
|
6.
Hu Z Q. Acta Metallurgica Sinica[J].
金属学报,2002,38:1121
|
CSCD被引
1
次
|
|
|
|
7.
Caron P. Superalloys - Materials for Advanced Power Engineering[M].
Superalloys - Materials for Advanced Power Engineering,1998:897
|
CSCD被引
1
次
|
|
|
|
8.
Ellis D E. Phys RevB[J].
Phys RevB,1970,2:2887
|
CSCD被引
33
次
|
|
|
|
9.
Rosen A. J Chem Phys[J].
J Chem Phys,1976,65:2639
|
CSCD被引
2
次
|
|
|
|
10.
Adachi H. J Phys Soc Japan[J].
J Phys Soc Japan,1978,45:875
|
CSCD被引
12
次
|
|
|
|
11.
Tanaka I. Acta Mater[J].
Acta Mater,1998,46:6511
|
CSCD被引
4
次
|
|
|
|
12.
Mulliken R S. J Chem Phys[J].
J Chem Phys,1955,23:1833
|
CSCD被引
157
次
|
|
|
|
13.
Harada H. Appl Sur Sci[J].
Appl Sur Sci,1993,67:299
|
CSCD被引
5
次
|
|
|
|
14.
Liu Y. Acta Mater[J].
Acta Mater,1997,45:1937
|
CSCD被引
1
次
|
|
|
|
15.
Morinaga M. J Phys Soc Jpn[J].
J Phys Soc Jpn,1984,53:653
|
CSCD被引
9
次
|
|
|
|
16.
Morinaga M. Superalloys[M].
Superalloys,1984:523
|
CSCD被引
6
次
|
|
|
|
17.
Murakami H. Materials for Advanced Power Engineering[M].
Materials for Advanced Power Engineering,1998:1139
|
CSCD被引
1
次
|
|
|
|
18.
Murata Y. Materials for Advanced Power Engineering[M].
Materials for Advanced Power Engineerin,1998:1138
|
CSCD被引
1
次
|
|
|
|
19.
Bruno G. Metall Mater Trans A[J].
Metall Mater Trans A.A,2003,34:193
|
CSCD被引
6
次
|
|
|
|
20.
Tanaka I. Acta Mater[J].
Acta Mater,1998,46:6511
|
CSCD被引
4
次
|
|
|
|
|