甲烷水合物的固体核磁共振碳谱与激光拉曼光谱研究
A Solid-State ~(13)C NMR and Laser Raman Spectroscopy Study on Synthesized Methane Hydrates
查看参考文献23篇
文摘
|
甲烷水合物(CH_4·nH_2O)是主要由甲烷和水分子构成的冰状笼型化合物,在自然界储量巨大.固体核磁共振(NMR)波谱和激光拉曼光谱是在分子水平分析甲烷水合物的重要手段.该文利用低温固体核磁共振碳谱(~(13)C NMR)对合成的甲烷水合物结构进行了研究,分别使用~(13)C交叉极化(13C CP)和高功率质子去偶(~1H HPDEC)2种脉冲程序采集甲烷水合物的~(13)C NMR谱图,结合实验结果分析及理论推导可知,使用~1H HPDEC方法得到的~(13)C NMR谱图信号更强,更利于定量分析;甲烷气体与冰粉合成的甲烷水合物为I型,其大笼和小笼占有率分别为0.988和0.824,水合数为6.07;甲烷气体与SH2站位沉积物和冰粉合成的甲烷水合物也为I型,其大笼和小笼占有率分别为0.987和0.887,水合数为5.98;SH2站位沉积物使合成的甲烷水合物的小笼占有率提高、水合数降低、水合物饱和度提高.激光拉曼光谱结果证实了上述结果的准确性.该文为甲烷水合物测试提供了重要的方法参考. |
其他语种文摘
|
Methane hydrates (CH_4·nH_2O) mainly composed of methane and water are ice-like crystalline clathrate compounds. They form a large natural gas reservoir due to their abundance. Solid-state NMR and laser Raman spectroscopy are two techniques which can be used for microscopic analysis for methane hydrates. In this paper, a low temperature solid-state ~(13)C NMR technology was used to study the structures of synthesized methane hydrates. It was shown that 1H high power decoupling (~1H HPDEC) had a better performance than ~(13)C cross polarization (13C CP) for quantitative analysis for methane hydrates. The NMR results indicated that the methane hydrates synthesized by mixing methane gas with ice powder had a type-I structure, with large and small cage occupancies of 0.988 and 0.824, respectively, and a hydrate number of 6.07. Methane hydrates synthesized by mixing the methane gas with the continental slope of the South China Sea site SH2 sediments and ice powder also had a type-I structure, with large and small cage occupancies of 0.987 and 0.887, respectively, and a hydrate number of 5.98. The result showed that addition of site SH2 sediments could reduce hydrate number of methane hydrates, and make small cage occupancy and hydrate saturation higher, which were verified by laser Raman spectroscopy. |
来源
|
波谱学杂志
,2017,34(2):148-155 【扩展库】
|
DOI
|
10.11938/cjmr20170203
|
关键词
|
固体~(13)C NMR
;
激光拉曼光谱
;
甲烷水合物
|
地址
|
1.
中国科学院广州地球化学研究所, 中国科学院天然气水合物重点实验室, 广东, 广州, 510640
2.
青岛海洋地质研究所, 国土资源部天然气水合物重点实验室;;青岛海洋科学与技术国家实验室, 山东, 青岛, 266071
3.
中国科学院广州能源研究所, 中国科学院天然气水合物重点实验室, 广东, 广州, 510650
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4556 |
学科
|
物理学 |
基金
|
中国科学院广州能源研究所所长创新基金培育专项
;
中国石油-中科院科技合作项目
;
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:5999314
|
参考文献 共
23
共2页
|
1.
Paull C K.
Natural gas hydrates:occurrence, distribution, and detection,2001:131-143
|
CSCD被引
1
次
|
|
|
|
2.
Kida M. Natural gas hydrates with locally different cage occupancies and hydration numbers in Lake Baikal.
Geochem Geophy Geosy,2009,10(5):1-8
|
CSCD被引
7
次
|
|
|
|
3.
Uchida T. Raman spectroscopic determination of hydration number of methane hydrates.
AIChE J,1999,45(12):2641-2645
|
CSCD被引
14
次
|
|
|
|
4.
Lu H L. The characteristics of gas hydrates recovered from the Mount Elbert Gas Hydrate stratigraphic test well, Alaska North Slope.
Mar Petrol Geol,2011,28(2):411-418
|
CSCD被引
7
次
|
|
|
|
5.
Handa Y P. A Calorimetric study of naturally occurring gas hydrated.
Ind Eng Chem Res,1988,27(5):872-874
|
CSCD被引
12
次
|
|
|
|
6.
Ripmeester J A. Low-temperature cross-polarizatlon/magic angle spinning ~(13)C NMR of solid methane hydrates:structure, cage occupancy, and hydration number.
J Phys Chem,1988,92(2):337-339
|
CSCD被引
12
次
|
|
|
|
7.
夏宁. 显微激光拉曼光谱测定天然气水合物的方法研究.
岩矿测试,2011,30(4):416-422
|
CSCD被引
6
次
|
|
|
|
8.
Ohno H. Raman studies of methane-ethane hydrate metastability.
J Phys Chem A,2009,113:1711-1716
|
CSCD被引
6
次
|
|
|
|
9.
孟庆国. ~(13)C固体核磁共振法测定CH_4-THF二元水合物的微观结构特征.
天然气工业,2015,35(3):1-6
|
CSCD被引
1
次
|
|
|
|
10.
刘昌岭. 固体核磁共振技术在气体水合物研究中的应用.
波谱学杂志,2012,29(3):465-474
|
CSCD被引
4
次
|
|
|
|
11.
Moudrakovshi I. Experimental solid state NMR of gas hydrates:problems and solutions.
Proceedings of the 6th International Conference on Gas Hydrates,2008
|
CSCD被引
1
次
|
|
|
|
12.
吴能友. 南海神狐海域天然气水合物成藏系统初探.
天然气工业,2007,27(9):1-6
|
CSCD被引
126
次
|
|
|
|
13.
Wu N Y. Gas hydrate system of Shenhu area, Northern South China Sea:Geochemical results.
Journal of Geological Research,2011:370298
|
CSCD被引
21
次
|
|
|
|
14.
Subramanian S. Trends in vibrational frequencies of guests trapped in clathrate hydrate cages.
J Phys Chem B,2002,106(17):4348-4355
|
CSCD被引
10
次
|
|
|
|
15.
Kida M. Characteristics of natural gas hydrates occurring in pore-spaces of marine sediments collected from the eastern Nankai Trough, off Japan.
Energy Fuels,2009,23(11):5580-5586
|
CSCD被引
7
次
|
|
|
|
16.
Davdson D W. Xenon129 NMR and the thermodynamic parameters of xenon hydrate.
J Phys Chem,1986,90:6549-6552
|
CSCD被引
2
次
|
|
|
|
17.
Susilo R. Characterization of gas hydrates with PXRD, DSC, NMR, and Raman spectroscopy.
Chem Eng Sci,2007,62(15):3930-3939
|
CSCD被引
9
次
|
|
|
|
18.
Lee J W. ~(13)C NMR spectroscopies and formation kinetics of gas hydrates in the presence of monoethylene glycol as an inhibitor.
Chem Eng Sci,2013,104:755-759
|
CSCD被引
4
次
|
|
|
|
19.
Ripmeester J A. Structure and composition of gas hydrate in sediment recovered from the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well, determined by X-ray diffraction and Raman and solid-state nuclear magnetic resonance spectroscopy.
Geological Survey of Canada Bulletin,2005,585:106
|
CSCD被引
3
次
|
|
|
|
20.
Kim D Y. Compositional and structural identification of natural gas hydrates collected at Site 1249 on Ocean Drilling Program Leg 204.
Korean J Chem Eng,2005,22(4):569-572
|
CSCD被引
5
次
|
|
|
|
|