Algorithm Design and Approximation Analysis on Distributed Robust Game
查看参考文献36篇
文摘
|
This paper designs a distributed algorithm to seek generalized Nash equilibria of a robust game with uncertain coupled constraints. Due to the uncertainty of parameters in set constraints, the authors aim to find a generalized Nash equilibrium in the worst case. However, it is challenging to obtain the exact equilibria directly because the parameters are from general convex sets, which may not have analytic expressions or are endowed with high-dimensional nonlinearities. To solve this problem, the authors first approximate parameter sets with inscribed polyhedrons, and transform the approximate problem in the worst case into an extended certain game with resource allocation constraints by robust optimization. Then the authors propose a distributed algorithm for this certain game and prove that an equilibrium obtained from the algorithm induces an ε-generalized Nash equilibrium of the original game, followed by convergence analysis. Moreover, resorting to the metric spaces and the analysis on nonlinear perturbed systems, the authors estimate the approximation accuracy related to ε and point out the factors influencing the accuracy of ε. |
来源
|
Journal of Systems Science and Complexity
,2023,36(2):480-499 【核心库】
|
DOI
|
10.1007/s11424-023-1436-1
|
关键词
|
Approximation
;
distributed algorithm
;
ε-Nash equilibrium
;
robust game
|
地址
|
1.
Academy of Mathematics and Systems Science,Chinese Academy of Sciences, Key Laboratory of Systems and Control,Chinese Academy of Sciences, Beijing, 100190
2.
School of Mathematical Sciences,University of Chinese Academy of Sciences, Beijing, 100049
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
数学 |
基金
|
supported partly by the National Key R&D Program of China
;
the Strategic Priority Research Program of Chinese Academy of Sciences
;
国家自然科学基金
|
文献收藏号
|
CSCD:7551085
|
参考文献 共
36
共2页
|
1.
Ardagna D. Generalized Nash equilibria for the service provisioning problem in cloud systems.
IEEE Transactions on Services Computing,2012,6(4):429-442
|
CSCD被引
3
次
|
|
|
|
2.
Pang J S. Generalized Nash equilibria for the service provisioning problem in cloud systems.
IEEE Transactions on Information Theory,2008,54(8):3471-3489
|
CSCD被引
6
次
|
|
|
|
3.
Facchinei F.
Finite-Dimensional Variational Inequalities and Complementarity Problems,2017
|
CSCD被引
1
次
|
|
|
|
4.
Fischer A. Generalized Nash equilibrium problems-recent advances and challenges.
Pesquisa Operacional,2014,34(3):521-558
|
CSCD被引
1
次
|
|
|
|
5.
Paccagnan D. Distributed computation of generalized Nash equilibria in quadratic aggregative games with affine coupling constraints.
2016 IEEE 55th Conference on Decision and Control (CDC),2016:6123-6128
|
CSCD被引
1
次
|
|
|
|
6.
Liang S. Distributed Nash equilibrium seeking for aggregative games with coupled constraints.
Automatica,2017,85:179-185
|
CSCD被引
18
次
|
|
|
|
7.
Yi P. An operator splitting approach for distributed generalized Nash equilibria computation.
Automatica,2019,102:111-121
|
CSCD被引
15
次
|
|
|
|
8.
Belgioioso G. Distributed generalized Nash equilibrium seeking in aggregative games on time-varying networks.
IEEE Transactions on Automatic Control,2020,66(5):2061-2075
|
CSCD被引
6
次
|
|
|
|
9.
Bertsimas D. Theory and applications of robust optimization.
SIAM Review,2011,53(3):464-501
|
CSCD被引
51
次
|
|
|
|
10.
Aghassi M. Robust game theory.
Mathematical Programming,2006,107(1):231-273
|
CSCD被引
8
次
|
|
|
|
11.
Pita J. A robust approach to addressing human adversaries in security games.
ECAI 2012,2012:660-665
|
CSCD被引
1
次
|
|
|
|
12.
Nikoofal M E. Robust allocation of a defensive budget considering an attacker's private information.
Risk Analysis: An International Journal,2012,32(5):930-943
|
CSCD被引
2
次
|
|
|
|
13.
Zhu K. Downlink power control in two-tier cellular OFDMA networks under uncertainties: A robust Stackelberg game.
IEEE Transactions on Communications,2014,63(2):520-535
|
CSCD被引
7
次
|
|
|
|
14.
Yang H. Noncooperative and cooperative optimization of electric vehicle charging under demand uncertainty: A robust Stackelberg game.
IEEE Transactions on Vehicular Technology,2015,65(3):1043-1058
|
CSCD被引
4
次
|
|
|
|
15.
Chen G. Distributed algorithm for ε-generalized Nash equilibria with uncertain coupled constraints.
Automatica,2021,123:109313
|
CSCD被引
4
次
|
|
|
|
16.
Gadjov D. A passivity-based approach to Nash equilibrium seeking over networks.
IEEE Transactions on Automatic Control,2018,64(3):1077-1092
|
CSCD被引
10
次
|
|
|
|
17.
Zeng X. Distributed Algorithm for Robust Resource Allocation with Polyhedral Uncertain Allocation Parameters.
Journal of Systems Science and Complexity,2018,31(1):103-119
|
CSCD被引
6
次
|
|
|
|
18.
Wang J. A generalized Nash equilibrium approach for robust cognitive radio networks via generalized variational inequalities.
IEEE Transactions on Wireless Communications,2014,13(7):3701-3714
|
CSCD被引
3
次
|
|
|
|
19.
Bianchi M. Continuous-time fully distributed generalized Nash equilibrium seeking for multi-integrator agents.
Automatica,2021,129:109660
|
CSCD被引
6
次
|
|
|
|
20.
Qiu L. Unitarily invariant metrics on the Grassmann space.
SIAM Journal on Matrix Analysis and Applications,2005,27(2):507-531
|
CSCD被引
1
次
|
|
|
|
|