基于自适应PCNN模型的四元数小波域图像融合算法
Method for Image Fusion Algorithm Based on Adaptive PCNN Model Parameters in Quaternion Wavelet Domain
查看参考文献24篇
文摘
|
针对红外和可见光图像的自身特点,本文提出一种基于四元数小波变换(QWT)和自适应脉冲耦合神经网络(PCNN)模型相结合的红外图像与可见光图像融合的新算法。首先将红外图像与可见光图像分别进行四元数小波变换,分别得到低频子带和高频子带系数;其次,采用局部区域方差匹配的融合准则处理低频子带系数,并用自适应的PCNN模型处理高频子带系数,用一种改进的空间频率作为PCNN模型的刺激输入,且采用拉普拉斯算子调节PCNN模型的阈值;最后经过四元数小波逆变换实现图像的融合。将本文提出的新算法与经典的图像融合算法进行对比分析,实验结果说明,新方法取得了较好地视觉改进效果,并在客观标准上也达到一定的提高。 |
其他语种文摘
|
Aiming at the features of infrared and visible image,a new fusion algorithm which combines quaternion wavelet transform(QWT) with adaptive pulse coupled neural network(PCNN) is presented.In the proposed fusion process,the infrared image and visible image are decomposed into low-frequency sub-band and high-frequency sub-band coefficients respectively via the QWT at first step.Then the low-frequency sub-band coefficients are fused using local variance matching rule,the high-frequency sub-band coefficients are fused using adaptive PCNN model.An improved spatial frequency as the input of the PCNN is used,and the Laplace operator is used to adjust the threshold of PCNN model.Finally,the fused image is reconstructed based on inverse QWT.The experiment results show that compared to the traditional image fusion algorithms,this proposed algorithm achieves better subjective visual results and also improves the objective criteria. |
来源
|
红外技术
,2018,40(7):660-667 【核心库】
|
关键词
|
图像融合
;
四元数小波变换
;
局部区域方差匹配
;
脉冲耦合神经网络
;
空间频率
;
拉普拉斯算子
|
地址
|
1.
安徽新华学院通识教育学院, 安徽, 合肥, 230088
2.
中国科学院合肥智能机械研究所, 安徽, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-8891 |
学科
|
自动化技术、计算机技术 |
基金
|
安徽省质量工程《智慧课堂试点项目》
;
安徽省高校省级自然科学研究重点项目
;
安徽新华学院《概率论与数理统计A》教改课程项目
|
文献收藏号
|
CSCD:6280555
|
参考文献 共
24
共2页
|
1.
Baco E. Magnetic Resonance Imaging-Transectal Ultrasound Image-fusion Biopsies Accurately Characterize the Index Tumor: Correlation with Step-sectioned Radical Prostatectomy Specimens in 135 Patients.
European Urology,2015,67(4):787-794
|
CSCD被引
12
次
|
|
|
|
2.
Gennarelli G. Passive Multiarray Image Fusion for RF Tomography by Opportunistic Sources.
IEEE Geoscience & Remote Sensing Letters,2015,12(3):641-645
|
CSCD被引
2
次
|
|
|
|
3.
Stathaki T.
Image Fusion: Algorithms and Application,2008
|
CSCD被引
1
次
|
|
|
|
4.
夏静.
基于非采样Contourlet变换的图像融合算法研究,2012
|
CSCD被引
1
次
|
|
|
|
5.
Burt P J. The pyramid as a structure for efficient computation.
Multiresolution Image Processing and Analysis,1984:6-35
|
CSCD被引
9
次
|
|
|
|
6.
成培瑞. 基于多尺度区域对比的显著目标识别.
中国光学,2016,9(1):97-105
|
CSCD被引
7
次
|
|
|
|
7.
Do M N. The contourlet transform: an efficient directional multiresolution image representation.
IEEE Transactions on Image Processing,2005,14(12):2091-2106
|
CSCD被引
851
次
|
|
|
|
8.
Velisavljevic V. Directionlets: anisotropic multi-directional representation with separable filtering.
IEEE Transactions on Image Processing,2006,15(7):1916-1933
|
CSCD被引
38
次
|
|
|
|
9.
Lim W Q. The discrete shearlet transform: a new directional transform and compactly supported shearlet frames.
IEEE Transactions on Image Processing,2010,19(5):1166-1180
|
CSCD被引
50
次
|
|
|
|
10.
Cunha A L D. The nonsubsampled contourlet transform: theory, design and application.
IEEE Transactions on Image Processing,2006,15(10):3089-3101
|
CSCD被引
618
次
|
|
|
|
11.
Yang B. Image fusion using nonsubsampled contourlet transform.
Proceeding of the 4th International Conference on Image and Graphics,2007:719-724
|
CSCD被引
2
次
|
|
|
|
12.
Guo K. Optimally sparse multidimensional representation using shearlets.
SIAM Journal on Mathematical Analysis,2007,39(1):298-318
|
CSCD被引
139
次
|
|
|
|
13.
Easley G. Sparse directional image representations using the discrete shearlet transform.
Applied and Computational Harmonic Analysis,2008,25(1):25-46
|
CSCD被引
219
次
|
|
|
|
14.
Petrovic V. On the effects of sensor noise inpixel-level image fusion performance.
Proceedings of the Third International Conference on Information Fusion,2000:14-19
|
CSCD被引
1
次
|
|
|
|
15.
Chan W L. Coherent multiscale image processing using dual-tree quaternion wavelets.
IEEE Transactions on Image Processing,2008,17(7):1069-1082
|
CSCD被引
16
次
|
|
|
|
16.
Johnson John L. PCNN Models and Applications.
IEEE Transactions on Neural Net-works,1999,10(3):480-498
|
CSCD被引
218
次
|
|
|
|
17.
Yang Hengfen. Block medical image fusion based on adaptive PCNN.
2015 6th IEEE International Conference on Software Engineering and Service Science,2015:23-25
|
CSCD被引
1
次
|
|
|
|
18.
Broussard R P. Physiologically motivated image fusion for object detection using a pulse coupled neural network.
IEEE Transactions on Neural Network,1999,10(3):554-563
|
CSCD被引
59
次
|
|
|
|
19.
马义德. PCNN与传统神经网络在图像处理中的应用研究.
中国科技论文在线,2005:27-31
|
CSCD被引
1
次
|
|
|
|
20.
李美丽. 基于NSCT和PCNN的红外与可见光图像融合方法.
光电工程,2010,37(6):90-95
|
CSCD被引
23
次
|
|
|
|
|