双同位素示踪定量微藻对碳源利用份额的方法研究
Application ofbidirectional labeling method to quantifying carbon utilization in microalgae
查看参考文献15篇
文摘
|
2015年8月,在人工温室培养环境下,以蛋白核小球藻为实验材料,通过向培养液中添加两种标记δ~(13)C的碳酸氢钠来培养微藻,每天定时监测培养液的无机碳稳定同位素组成和微藻生物量,并测定最终获得的微藻藻体的有机碳稳定同位素组成,运用双同位素示踪模型,通过无机碳稳定同位素和有机碳稳定同位素两种方法,分别成功计算出了微藻利用不同碳源的份额,实验结果分别为:添加5.0 mmol/L碳酸氢钠条件下是0.19、添加10.0 mmol/L条件下是0.37、而添加20.0 mmol/L条件下是0.57。并对这两种算法进行了分析。定量计算微藻对不同无机碳源的利用份额.在岩溶湖泊碳循环研究领域具有重要意义。 |
其他语种文摘
|
August 2015,the Chlorella pyrenoidosawas cultivated in a greenhouse with different inorganic carbons (NaH~(13) CO_3 with different δ~(13)C values added) in the culture medium. The δ~(13)C of inorganic carbon in the medium and the biomass of the microalgae were detected on a daily basis. In the meantime, the organic stable carbon isotope compositions of the microalgae was also measured. The proportion of the added inorganic carbon used by microalgae was quantified by comparing their stable carbon isotope compositions using the bidirectional labeling method (NaH~(13) CO_3 with different δ~(13) Cvalues was added). This study compared respec-tively both inorganic carbon and organic carbon of the stable carbon isotope compositions. The results are as follows, it is 0.19 under 5.0 mmol/L NaHCO_3, 0.37 under 10.0 mmol/L NaHCO_3,and 0.57 under 20.0 mmol/L NaHCO_3. At last,we analyzed the two methods for quantifying the carbon sources in algae. It is very important to calculate the proportion of different inorganic carbon in the carbon cycle research in karst lakes. |
来源
|
中国岩溶
,2016,35(6):614-618 【扩展库】
|
DOI
|
10.11932/karst20160602
|
关键词
|
碳酸盐利用能力
;
稳定碳同位素
;
微藻
|
地址
|
1.
贵州师范大学喀斯特研究院, 环境地球化学国家重点实验室, 贵阳, 550001
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4810 |
学科
|
地质学;植物学 |
基金
|
国家自然科学基金项目
;
贵州省项目
|
文献收藏号
|
CSCD:5910917
|
参考文献 共
15
共1页
|
1.
Forster P. Changes in atmospheric constituents and in radiative forcing.
Climate change,2007:131-234
|
CSCD被引
1
次
|
|
|
|
2.
王协琴. 温室效应和温室气体减排分析.
天然气技术,2008(6):53-58
|
CSCD被引
3
次
|
|
|
|
3.
Field C B. Primary production of the biosphere: Integrating terrestrial and oceanic components.
Science,1998,281:237-240
|
CSCD被引
468
次
|
|
|
|
4.
Carpenter S R. Global change and freshwater ecosystems.
Annual Review of Ecology and Systematics,1992,23:119-139
|
CSCD被引
11
次
|
|
|
|
5.
Wrona F J. Climate change effects on aquatic biota, ecosystem structure and function.
AMBIO: A Journal of the Human Environment,2006,35:359-369
|
CSCD被引
4
次
|
|
|
|
6.
Moazami-Goudarzi M. Inorganic carbon acquisition in two green marine stichococcus species.
Plant, Cell Environment,2011,34:1465-1472
|
CSCD被引
3
次
|
|
|
|
7.
Moulin P. Different mechanisms of inorganic carbon acquisition in red macroalgae (rhodophyta) revealed by the use of TRIS buffer.
Aquatic Botany,2011,95:31-38
|
CSCD被引
4
次
|
|
|
|
8.
Ray S. Carbon acquisition mecha-nisms in chara tomentosa.
Aquatic Botany,2003,76:141-154
|
CSCD被引
4
次
|
|
|
|
9.
李海涛. 微藻利用不同无机碳途径的定量方法.
地球与环境,2014,42(1):116-121
|
CSCD被引
5
次
|
|
|
|
10.
Burkhardt S. Effects of growth rate, CO_2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton.
Geochimica et Cosmochimica Acta,1999,63(22):3729-3741
|
CSCD被引
17
次
|
|
|
|
11.
Wu Y Y. Effect of acetazolamide on stable carbon isotope fractionation in Chlamydomonas reinhardtii and Chlorella vulgaris.
Chinese Science Bulletin,2012,57:786-789
|
CSCD被引
9
次
|
|
|
|
12.
门玉洁. 芦苇化感组分对斜生栅藻Scenedesmus obliquus生长特性的影响.
生态环境,2006,15(5):925-929
|
CSCD被引
20
次
|
|
|
|
13.
郭颖娜. 蛋白质含量测定方法的比较.
河北化工,2008,31(4):36-37
|
CSCD被引
11
次
|
|
|
|
14.
Atekwana E A. Seasonal variations of dissolved inorganic carbon and 13C of surface waters: application of a modified gas evolution technique.
Journal of Hydrology,1998,205(3):265-278
|
CSCD被引
49
次
|
|
|
|
15.
Chen Z. Effect of Cl~-on photosyn-thetic bicarbonate uptake in two cyanobacteria Microcystis aeruginosa and Synechocystis PCC6803.
Chinese Science Bulletin,2009,54:1197-1203
|
CSCD被引
7
次
|
|
|
|
|