基于理想视线的弹道成型最优导引律
Trajectory Shaping Guidance Law Based on Ideal Line-of-sight
查看参考文献15篇
文摘
|
寻的导弹在追踪目标的过程中,常遇到由于背景过于复杂而锁定目标失败的情况,例如在导弹下视攻击低空目标时,强地面背景和地杂波干扰常常导致导弹无法正常截获或跟踪目标。提出一种以理想视线为控制目标的建模方法,并在约束终端弹目相对运动方向和弹道过载的基础上,设计了一种弹道成型最优导引律。该导引律并不直接控制终端相对速度矢量,只在所设定的理想视线的垂直方向上进行控制,从而导引律形式更简单,扩展性更强。通过数字仿真表明,所设计的导引律能够较好地实现末端弹道成型要求,并且过载分配更为合理,可有效减小地面背景和地杂波干扰对导引头截获跟踪的影响。 |
其他语种文摘
|
When a homing missile tracks a target, it may fail to lock the target because of complicated background. For example, when a missile attacks a target in look-down mode, the missile' capability of intercepting or acquiring a target is weakened by complicated surface background and clutter. A new modeling method which regards the ideal line-of-sight as the control objective is put forward. And an optimal guidance law is designed based on restraining the terminal direction of relative motion between missile and target and the trajectory overload. The guidance law is used to control the motion of missile in a direction vertical to ideal line-of-sight. The simulation result shows that this method can meet the requirement of terminal trajectory shaping better, distribute the overload more reasonably and decrease the influence of ground background and clutter on target tracking effectively. |
来源
|
兵工学报
,2014,35(8):1200-1204 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2014.08.010
|
关键词
|
控制科学与技术
;
最优导引律
;
弹道成型
;
理想视线
;
过载优化
|
地址
|
北京理工大学宇航学院, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
自动化技术、计算机技术 |
基金
|
北京高等学校青年英才计划项目
;
北京理工大学基础研究基金
|
文献收藏号
|
CSCD:5227094
|
参考文献 共
15
共1页
|
1.
蔡洪. 具有终端角度约束的导引律综述.
宇航学报,2010,31(2):315-323
|
CSCD被引
44
次
|
|
|
|
2.
Kim M. Terminal guidance for impact attitude angle constrained flight trajectories.
IEEE Transactions on Aerospace and Eletronic Systems AES,1973,9(6):852-859
|
CSCD被引
132
次
|
|
|
|
3.
Idan M. Optimal planar interception with terminal constraint.
Journal of Guidance, Control, and Dynamics,1995,18(6):1078-1083
|
CSCD被引
12
次
|
|
|
|
4.
Song T L. Impact angle control for planar engagements.
IEEE Transactions on Aerospace and Electronic Systems,1999,35(4):1439-1444
|
CSCD被引
44
次
|
|
|
|
5.
Shaferman V. Linear quadratic guidance laws for imposing a terminal intercept angle.
Journal of Guidance, Control, and Dynamics,2008,31(5):1400-1412
|
CSCD被引
42
次
|
|
|
|
6.
Lee J I. Guidance law to control impact time and angle.
IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):301-310
|
CSCD被引
106
次
|
|
|
|
7.
Taub I. Intercept angle missile guidance under time-varying acceleration bounds.
Journal of Guidance, Control, and Dynamics,2013,36(3):686-699
|
CSCD被引
24
次
|
|
|
|
8.
Kim B S. Biased PNC law for impact with angular constraint.
IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):277-288
|
CSCD被引
123
次
|
|
|
|
9.
Kim T H. Bias-shaping method for biased proportional navigation with terminal-angle constraint.
Journal of Guidance, Control, and Dynamics,2013,36(6):1810-1816
|
CSCD被引
22
次
|
|
|
|
10.
Erer K S. Indirect impact-ingle-control against stationary targets using biased pure proportional navigation.
Journal of Guidance, Control, and Dynamics,2012,35(2):700-704
|
CSCD被引
40
次
|
|
|
|
11.
Ratnoo A. Impact angle constrained interception of stationary targets.
Journal of Guidance, Control,and Dynamics,2008,31(6):1817-1822
|
CSCD被引
56
次
|
|
|
|
12.
Ratnoo A. Impact angle guidance against nonstationary nonmaneuvering targets.
Journal of Guidance, Control, and Dynamics,2010,32(1):269-275
|
CSCD被引
52
次
|
|
|
|
13.
Zhou D. A guidance law with terminal impact angle constraint accounting for missile autopilot.
Journal of Dynamic Systems Measurement and Control-Transactions of the ASME,2013,135(5):DS-12-1144
|
CSCD被引
30
次
|
|
|
|
14.
Ben-Asher J Z. New proportional navigation law for ground-to-air systems.
Journal of Guidance, Control, and Dynamics,2003,26(5):822-825
|
CSCD被引
8
次
|
|
|
|
15.
张洪铖.
最优控制理论与应用,2006:31-63
|
CSCD被引
1
次
|
|
|
|
|