帮助 关于我们

返回检索结果

高功率超快光纤激光技术发展研究
Development of High-Power Ultrafast Fiber Laser Technology

查看参考文献129篇

刘一州 1   乔文超 1   高空 1,2   徐荣 2   冯天利 1,2   张萌 1   李珣 3   梁洋洋 1,2   李涛 1,2  
文摘 自1960年第一台红宝石激光器问世以来,高速更新换代的固体激光器、光纤激光器、气体激光器和半导体激光器为通信、工业加工与制造、军事国防、前沿科学研究等领域的研究和发展提供了有力的支撑。其中,光纤激光器以其良好的散热特性、出色的激光模式、更高的放大效率、更为紧凑的空间结构和更加低廉的制作成本成为新一代高功率超快激光研发的首选。得益于光纤的波导特性和大比表面积的散热特点,光纤激光器可以在高平均功率状态下实现高光束质量的长期稳定工作。结合啁啾脉冲放大与多通道相干合束的办法,目前高功率超快光纤激光器已经实现了万瓦级平均功率、百飞秒级脉冲宽度的高功率超快激光输出。本文面向高功率超快光纤激光系统,介绍高功率超快光纤激光研究发展现状,协同阐述超快光纤振荡器、光学参量管理、超快光纤放大器和非线性压缩四部分的原理和内在联系,并对高功率超快光纤激光的未来发展方向做出展望。
其他语种文摘 Significance In 1960,after the invention of the first ruby laser,fast-developed solid-state,fiber,gas,and semiconductor lasers provided great support for the research and development of multiple applications,such as optical communication,industrial processing and manufacturing,military and national defense,and state-of-the-art scientific research.Fiber lasers with good heat dissipation characteristics,excellent transverse mode,high amplification efficiency,compact laser construction,and less costs have become the first choice in developing next generation high-power ultrafast lasers.Fiber lasers can achieve long-term operation stability with good beam quality under above-average power because of their waveguide characteristics and large specific gain fiber surface area. High-power ultrafast fiber lasers usually contain four modules,ultrafast fiber oscillators,optical parameters management,ultrafast fiber amplifiers,and nonlinear compression.Ultrafast fiber oscillators provide seed lasers to achieve high-power ultrafast fiber lasers.A qualified mode-locked fiber oscillator has long-term stability and a proportional repetition shared rate corresponding to the requirements of high-power fiber amplifications.Optical parameters management plays a key role in inhibiting uncompensated nonlinear effects and enabling high-energy pulse output with good pulse quality after optical pulse stretching,high power fiber amplification,and optical pulse compression.The ultrafast fiber amplifiers are key modules to scale up the average power of the stretched-signal pulses.Unfortunately,the uncompensated nonlinear phase introduced by the high-peak power of the signal pulse distorts the pulse profile during its propagation in the fiber system.Based on the well-managed optical parameters of fiber lasers,the well-known fiber amplification methods,such as chirped-pulse,divided-pulse,and pre-chirp managed amplifications are making a significant breakthrough in achieving high-power ultrafast fiber lasers.The pulse duration after high-power fiber amplification is hundreds of femtoseconds limited by the gain-narrowing effect. Therefore,a further cascaded nonlinear compression stage is needed for shortening the amplified pulses,which can realize single/few optical cycle pulse duration to fulfill the requirements of the state-of-the-art physical experiments. With their excellent optical characteristics,the fast-developing high-power fiber lasers can play an increasingly important role in multiple applications. Progress Progress in developing ultrafast fiber oscillators,optical parameters management,ultrafast fiber amplifiers,and nonlinear compression are summarized in this paper,and latest published results are discussed by illustrating the advantages and disadvantages of different methods.The highest repetition rate of fiber oscillators reported using the method of nonlinear polarization rotation is 1GHz provided to be useful in astronomical optical frequency comb,pulse stacking,and the cavity-enhanced high harmonic generation.The highest average output power and pulse energies are 1.98Wand 684nJ,which are achieved with the nonlinear loop mirror mode-locking scheme,respectively.Applying a semiconductor saturable absorber mirror to the mode-locked fiber laser can generate an output mode-locked laser with the repetition rate range of 10kHz--1GHz and sub-μJ pulse energy.As a newly invented mode-locked method,Mamyshev mode-locked fiber laser has attracted attention for its broadband optical spectrum,high-pulse energy output,and high-peak power.As the seeder for a high-power ultrafast fiber laser system,further efforts need to be taken in developing a more stable fiber oscillator with better parameters. Relying on optical parameter management,current ultrafast fiber amplifiers are realized with different amplification methods,such as chirped-pulse,divided-pulse,and pre-chirp managed amplifications.
来源 中国激光 ,2021,48(12):1201003 【核心库】
DOI 10.3788/CJL202148.1201003
关键词 激光光学 ; 高功率激光 ; 超快激光 ; 光纤激光 ; 非线性管理 ; 相位管理
地址

1. 山东大学信息科学与工程学院激光物理与技术实验室, 山东, 青岛, 266237  

2. 山东大学, 激光与红外系统集成技术教育部重点实验室, 山东, 青岛, 266237  

3. 中国科学院西安光学精密机械研究所, 瞬态光学与光子学国家重点实验室, 陕西, 西安, 710119

语种 中文
文献类型 研究性论文
ISSN 0258-7025
学科 物理学
基金 国家重点研发计划 ;  国家自然科学基金 ;  山东省自然科学基金 ;  山东省泰山学者建设工程专项 ;  陕西省重点研发计划 ;  山东大学青年学者未来计划 ;  山东大学齐鲁青年学者
文献收藏号 CSCD:7015083

参考文献 共 129 共7页

1.  Snitzer E. Optical maser action of Nd+3 in a barium crown glass. Physical Review Letters,1961,7(12):444-446 CSCD被引 39    
2.  Koester C J. Amplification in a fiber laser. Applied Optics,1964,3(10):1182-1186 CSCD被引 27    
3.  Kao K C. Dielectric-fibre surface waveguides for optical frequencies. Proceedings of the Institution of Electrical Engineers,1966,113(7):1151-1158 CSCD被引 30    
4.  Stolen R H. Self-phase-modulation in silica optical fibers. Physical Review A,1978,17(4):1448-1453 CSCD被引 26    
5.  Tomlinson W J. Compression of optical pulses chirped by self-phase modulation in fibers. Conference on Lasers and Electro-Optics, June 19-22, 1984, Anaheim, California,1984:TUE4 CSCD被引 1    
6.  Strickland D. Compression of amplified chirped optical pulses. Optics Communications,1985,56(3):219-221 CSCD被引 311    
7.  Snitzer E. Double clad, offset core Nd fiber laser. Optical Fiber Sensors, January 27, 1988,New Orleans, LA,1988:PD5 CSCD被引 1    
8.  Taverner D. 158-µJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier. Optics Letters,1997,22(6):378-380 CSCD被引 7    
9.  薛冰. 基于超快飞秒激光技术的太赫兹波产生与探测. 光子学报,2008,37(2):1-5 CSCD被引 4    
10.  郝强. 全光纤超快激光器及光学频率梳. 光电产品与资讯,2018,9(4):32-33 CSCD被引 1    
11.  赵羽. 光纤激光器锁模技术研究进展. 激光技术,2009,33(2):162-165 CSCD被引 4    
12.  Ippen E P. Principles of passive mode locking. Applied Physics B,1994,58(3):159-170 CSCD被引 7    
13.  余霞. 高功率超快光纤激光器研究进展. 中国激光,2019,46(5):0508007 CSCD被引 11    
14.  周晓康. 改进的非线性放大环形镜锁模激光器研究. 中国激光,2015,42(12):1202002 CSCD被引 2    
15.  Li X H. Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser. Optics Express,2014,22(14):17227-17235 CSCD被引 3    
16.  Li C. 1 GHz repetition rate femtosecond Yb: fiber laser for direct generation of carrier-envelope offset frequency. Applied Optics,2015,54(28):8350-8353 CSCD被引 12    
17.  Li C. 750 MHz fundamental repetition rate femtosecond Yb: fiber ring laser. Optics Letters,2013,38(3):314-316 CSCD被引 6    
18.  Chong A. All-normal-dispersion femtosecond fiber laser. Optics Express,2006,14(21):10095-10100 CSCD被引 72    
19.  Lim H. Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control. Optics Express,2002,10(25):1497-1502 CSCD被引 13    
20.  Szczepanek J. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers. Conference on Lasers and Electro-Optics, May 14-19, 2017,San Jose, California,2017:SM2I. 5 CSCD被引 1    
引证文献 7

1 林庆典 国产啁啾布拉格光纤光栅在飞秒激光系统中的应用 强激光与粒子束,2022,34(4):041001
CSCD被引 0 次

2 冯天利 基于双光成丝过程的光参量啁啾脉冲放大器前端 中国激光,2022,49(7):0708002
CSCD被引 2

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号